5.1 Graphs for Keeper

5.2 Pics

BASIC INTEGRATION FORMULAS

$-\int k d x=k x+C$
$-\int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, provided $r \neq 1$
$=\int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+C$
$\cdot \int b e^{a x} d x=\frac{b}{a} e^{a x}+C$

MORE ANTIDERIVATIVE RULES

$\int k f(x) d x=k \int f(x) d x$
$\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$

TRIG INTEGRALS	$\int \cos x d x=\sin x+C$
	$\int \sin x d x=-\cos x+C$
	$\int \sec ^{2} x d x=\tan x+C$
	$\int \csc ^{2} x d x=-\cot x+C$
$\int \sec x \tan x d x=\sec x+C$	
$\int \csc x \cot x d x=-\csc x+C$	

OTHER COMMON INTEGRAL

$$
\begin{gathered}
\int \frac{1}{x} \mathrm{dx} \text { or } \int x^{-1} d x=\ln |x|+c \\
\int e^{x} d x=e^{x}+c \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+c
\end{gathered}
$$

5.4 Pic

$$
\begin{aligned}
& \int_{a}^{a} f(x) d x=0 \\
& \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \\
& \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \\
& \int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x \\
& \int_{a}^{b} c \cdot f(x) d x=c \int_{a}^{b} f(x) d x
\end{aligned}
$$

