## Unit 4B: Graphing Rational Functions

## I CAN:

- Identify the important features of rational functions...
- x-and y-intercepts
- vertical, horizontal and/or slant asymptotes
- holes
- domain and range
- Graph rational functions


| Monday | Tuesday | Wednesday | Thursday | Friday |
| :---: | :---: | :---: | :---: | :---: |
| $22 \mathbb{D} A Y \mathbb{I}$ <br> Holes, Asymptotes, and Intercepts | 23 DAYZ <br> Graphing Rational Functions | $24 \mathbb{D} A У B$ <br> Graphing with Slant Asymptote | $25 \quad \mathbb{D} A Y 4$ <br> More Graphing Practice <br> DeltaMath Skills Check | $26$ <br> Help Sessions |
| $29 \mathbb{D} A Y$ S Review | $30 \quad \mathbb{D} A У 6$ <br> Review <br> Unit 4B Test | $31$ <br> Help Sessions | 1 <br> Unit 4B Test Due 8 am | 2 |

*THIS PLAN IS SUBJECT TO CHANGE. PLEASE REFER TO CTLS DIGITAL CLASSROOM FOR UPDATES.*

A rational function is a function of the form:

where $p(x)$ and $q(x)$ are
and $q(x) \neq$ $\qquad$

## Key Features of Rational Functions

(1) Simplify the function.

Factor the numerator and denominator, then eliminate common factors.

## HOLES

A hole is a point $(x, y)$ at which there is a $\qquad$ in the graph.

A hole occurs when there is a
between the numerator and denominator.

## X-INTERCEPT(S)

The points where the graph crosses the $x$-axis and where $y=0$.

## VERTICAL ASYMPTOTE(S)

Vertical boundary lines which the graph will not cross, written in the form $x=a$.
These occur because the denominator of a fraction cannot = $\qquad$ !

## HORIZONTAL ASYMPTOTES

Horizontal guidelines, written in the form $y=a$.

For each factor you eliminated in step 1, there is a hole! Locate each hole:
$\rightarrow$ To find the $x$-coordinate, set the factor $=0$ and solve.

To find the $y$-coordinate, substitute the $x$-coordinate into the simplified function.
(3) Set the numerator $\mathbf{= 0}$ and solve.
(4) Set the denominator $=0$ and solve.

Follow the rules below.

| CASE | HORIZONTAL <br> ASYMPTOTE |
| :---: | :---: |
| degree of $p<$ degree of $q$ |  |
| degree of $p=$ degree of $q$ |  |
| degree of $p>$ degree of $q$ |  |


| SLANT ASYMPTOTE <br> If the degree of $p$ is greater than the <br> degree of $q$ by 1, then the function has <br> a slant asymptote in the form <br> $y=m x+b$. | To find the slant asymptote, divide the numerator <br> by the denominator using long or synthetic <br> division. The depressed polynomial defines the <br> asymptote - ignore the remainder. |
| :---: | :--- |
| Y-INTERCEPT | Substitute 0 for $x$ in the simplified equation and <br> solve for $y$. |
| The point where the graph crosses the <br> $y$-axis and where $x=0$. |  |

Ex 1: Identify the key characteristics of the function and graph it.
$f(x)=\frac{x-4}{x+4}$

Hole(s):

VA:
x-int:

HA:
y-int:

SA:

Ex 2: Identify the key characteristics of the function and graph it.
$f(x)=\frac{5 x-10}{x^{2}-4}$

Hole(s):

VA:

HA:

SA:

Ex 3: Identify the key characteristics of the function and graph it.
$f(x)=\frac{2 x^{2}-8}{x^{2}-x-6}$

Hole(s):

VA:
x-int:
y-int:

SA:


Ex 4: Identify the key characteristics of the function and graph it.
$f(x)=\frac{3 x}{x^{2}-9}$

Hole(s):

VA:
x-int:

HA:
y-int:

SA:

Check your own understanding:

1. Circle each function that has a horizontal asymptote at $y=0$.
$f(x)=\frac{x+1}{x^{2}-9}$
$f(x)=\frac{2 x+2}{x-3}$
$f(x)=\frac{x^{2}-4}{2 x} \quad f(x)=\frac{3 x}{2 x^{2}-6 x}$
$f(x)=\frac{x}{x^{2}-1}$
2. Circle each function that has a vertical asymptote at $x=3$.

$$
f(x)=\frac{x+1}{x^{2}-9} \quad f(x)=\frac{2 x+2}{x-3} \quad f(x)=\frac{x^{2}-4}{2 x} \quad f(x)=\frac{3 x}{2 x^{2}-6 x} \quad f(x)=\frac{x}{x^{2}-1}
$$

3. Circle the $x$-intercepts of the function $f(x)=\frac{x^{2}-4}{2 x}$ ? $\quad-4$
$\qquad$

Identify the key characteristics of the function and graph it.

4. $f(x)=\frac{x-6}{x^{2}-6 x}$

Hole(s):
VA:
x-int:
y-int:
SA:

5. $f(x)=\frac{x^{2}+3 x-28}{x^{2}+12 x+35}$

Hole(s):
VA:
x-int:

HA:
y-int:


Fill in the blank using words in the word bank.
6. The first step in graphing a rational function is to $\qquad$ the numerator and denominator and simplify the equation.
7. When the equation is simplified, factors that $\qquad$ create holes in the graph.
8. Determine the equation of the vertical asymptote by setting the $\qquad$ equal to zero.
9. Determine the horizontal asymptote by comparing the $\qquad$ of the numerator and denominator.
10. Find the x -intercepts of a rational function by setting the $\qquad$ equal to zero.
11. Determine the $y$-intercept of the function by substituting zero for $\qquad$ .

Ex 1: Graph $f(x)=\frac{x^{3}+3 x^{2}}{x^{2}+2 x-3}$

## Hole(s):

VA:
x-int:

HA:
$y$-int:

SA:


Finding Slant Asymptote: $y=m x+b$
Divide the numerator by the denominator. The depressed polynomial is the " $m x+b$ " of the slant asymptote - ignore the remainder!

Ex 2: Determine the equations of the vertical asymptote(s) and horizontal or slant asymptotes for each function.

|  | VERTICAL ASYMPTOTE(S) | HORIZONTAL / SLANT |
| :--- | :--- | :--- |
| a. $f(x)=\frac{x+3}{2 x}$ |  |  |
| b. $f(x)=\frac{x^{2}-5 x+6}{x-1}$ |  |  |
| c. $f(x)=\frac{x-4}{x^{2}-x-6}$ |  |  |
| d. $f(x)=\frac{x^{2}-4}{x+3}$ |  |  |

*Which of the functions in example 2 have holes? How do you know?
$\qquad$

## Graphing Rational Equations Practice 2

Identify the key characteristics of the function and graph it.



Name: $\qquad$
Date: $\qquad$ Bell: $\qquad$
Graphing Rational Equations Practice
** This is a 2-page document! **
Graph each function. Identify the domain, range, asymptotes, and holes.

1. $f(x)=\frac{x+3}{x-2}$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$

Hole: $\qquad$
y-int : $\qquad$
2. $f(x)=\frac{4 x-24}{2 x-4}$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$

Hole: $\qquad$
$y$-int $\quad$ : $\qquad$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$

Hole: $\qquad$
y-int : $\qquad$
4. $f(x)=\frac{x+3}{x^{2}-9}$

$x$-int: $\qquad$

VA: $\qquad$ HA: $\qquad$

Hole: $\qquad$
$y$-int : $\qquad$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$

Hole: $\qquad$ $y$-int : $\qquad$
6. $f(x)=\frac{x^{2}-x-6}{x}$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$
Hole: $\qquad$
y-int : $\qquad$

$x$-int: $\qquad$

VA: $\qquad$

HA: $\qquad$

Hole: $\qquad$
$y$-int : $\qquad$


Multiple Choice: Write the letter of the correct response in the space provided.
$\qquad$ 6. Which describes the horizontal asymptote of the function $f(x)=\frac{x+4}{4 x^{2}-5}$ ?
A. $y=0$
B. $y=1$
C. $y=2$
D. $y=\frac{1}{2}$

- 7. Which describes the slant asymptote of the function $f(x)=\frac{x^{2}+7 x+1}{x-1}$ ?
A. $y=x+3$
B. $y=x+8$
C. $y=x+6$
D. $y=x+1$
$\qquad$ 8. Which describes one of the vertical asymptotes of the function $f(x)=\frac{6}{x^{2}-9}$ ?
A. $x=0$
B. $x=1$
C. $x=2$
D. $x=3$

9. Given the function $f(x)=\frac{x^{2}+4 x+3}{x+1}$, what is the $y$-coordinate of the hole?
10. What values of $x$ are excluded from the domain of $f(x)=\frac{x^{2}-5 x-6}{x^{2}-1}$ ?
11. Given the function $f(x)=\frac{x^{2}-5 x-6}{x^{2}-1} \ldots$
a. what is the x-intercept of the function?
b. what is the y-intercept of the function?
12. Matching: Match the function and the correct asymptote.

| Function |
| :---: |
| $f(x)=\frac{2 x-1}{x}$ |
| $f(x)=\frac{x}{2 x^{2}-2}$ |
| $f(x)=\frac{3 x}{x-2}$ |
| $f(x)=\frac{x+1}{2 x-1}$ |
| $f(x)=\frac{x^{2}-4 x+3}{x+2}$ |


| Asymptote |
| :---: |
| $y=0$ |
| $y=\frac{1}{2}$ |
| $y=x+2$ |
| $x=2$ |
| $x=0$ |

13. Identify the characteristics of the function and graph it.
$f(x)=\frac{x^{2}-2 x-15}{x^{2}-9}$

Hole(s):

VA:

HA:

SA:


