1. $\lim _{x \rightarrow 0} \frac{4 x-3}{7 x+1}=$
A. ∞
B. $-\infty$
C. 0
D. $\frac{4}{7}$
E. -3
2. $\lim _{x \rightarrow \frac{1}{3}} \frac{9 x^{2}-1}{3 x-1}=$
A. ∞
B. $-\infty$
C. 0
D. 2
E. 3
3. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=$
A. 4
B. 0
C. 1
D. 3
E. 2
4. The function $G(x)=\left\{\begin{array}{ll}x-3, & x<2 \\ -5, & x=2 \\ 3 x-7, & x>2\end{array}\right.$ is not continuous at $x=2$ because...
A. $G(2)$ is not defined
B. $\lim _{x \rightarrow 2} G(x)$ does not exist
C. $\lim _{x \rightarrow 2} G(x) \neq G(2)$
D. Only reasons B and C
E. All of the above reasons.
5. $\lim _{x \rightarrow \infty} \frac{-3 x^{2}+7 x^{3}+2}{2 x^{3}-3 x^{2}+5}=$
A. ∞
B. $-\infty$
C. 1
D. $\frac{7}{2}$
E. $-\frac{3}{2}$
6. $\lim _{x \rightarrow-2} \frac{\sqrt{2 x+5}-1}{x+2}=$
A. 1
B. 0
C. ∞
D. $-\infty$
E. Does

Not
Exist
7. If $f(x)=3 x^{2}-5 x$, then find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
A. $3 x-5$
B. $6 x-5$
C. $6 x$
D. 0
E. Does not exist
8. $\lim _{x \rightarrow-\infty} \frac{2-5 x}{\sqrt{x^{2}+2}}=$
A. 5
B. -5
C. 0
D. $-\infty$
E. ∞
9. The function $f(x)=\frac{2 x^{2}+x-3}{x^{2}+4 x-5}$ has a vertical asymptote at $x=-5$ because...
A. $\lim _{x \rightarrow-5^{+}} f(x)=\infty$
B. $\lim _{x \rightarrow-5^{-}} f(x)=-\infty$
C. $\lim _{x \rightarrow-5^{-}} f(x)=\infty$
D. $\lim _{x \rightarrow \infty} f(x)=-5$
E. $f(x)$ does not have a vertical asymptote at $x=-5$
10. Consider the function $H(x)=\left\{\begin{array}{l}3 x-5, \quad x<3 \\ x^{2}-2 x,\end{array}, x \geq 3\right.$. . Which of the following statements is/are true?
I. $\lim _{x \rightarrow 3^{-}} H(x)=4$.
II. $\lim _{x \rightarrow 3} H(x)$ exists.
III. $H(x)$ is continuous at $x=3$.
A. I only
B. II only
C. I and II only
D. I, II and III
E. None of these statements is true

Consider the function $h(x)=\frac{-2 x-\sin x}{x-1}$ to answer the following questions.
a. Find $\lim _{x \rightarrow 1^{+}} h(x)$. Show your numerical analysis that leads to your answer and explain what this result implies graphically about $h(x)$ at $x=1$.
b. Find $\lim _{x \rightarrow \frac{\pi}{2}}[h(x) \cdot(2 x-2)]$. Show your analysis.
c. Explain why the Intermediate Value Theorem guarantees a value of c on the interval [1.5, 2.5] such that $h(c)=-4$. Then, find c.

Free Response Practice \#2

Graph of $g(x)$

$$
f(x)= \begin{cases}a x+3, & x<-3 \\ x^{2}-3 x, & -3 \leq x<2 \\ b x-5, & x \geq 2\end{cases}
$$

Equation of $f(x)$

Pictured above is the graph of a function $g(x)$ and the equation of a piece-wise defined function $f(x)$. Answer the following questions.
a. Find $\lim _{x \rightarrow 1^{+}}[2 g(x)-f(x) \cdot \cos \pi x]$. Show your work applying the properties of limits. $x \rightarrow 1^{+}$
b. On its domain, what is one value of x at which $g(x)$ is discontinuous? Use the three part definition of continuity to explain why $g(x)$ is discontinuous at this value.
c. For what value(s) of a and b, if they exist, would the function $f(x)$ be continuous everywhere? Justify your answer using limits.

