

Honors Calculus

Keeper 23

INTERCEPTS

X-intercept(s): plug in a 0 for y and solve for x

•Y-intercept: plug in a 0 for x and solve for y

CRITICAL POINTS

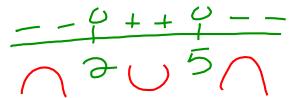
We say that x = c is a critical point of the function f(x) if f(c) exists and if either of the following are true: Set f' = 0 or f'(c) = DNE

***If a point is not in the domain of the function then it is not a critical point.

INTERVALS OF INCREASE AND DECREASE

*Make an f' line using the critical points & undefined values of f. Then plug in numbers to f'(x) to find out + or –

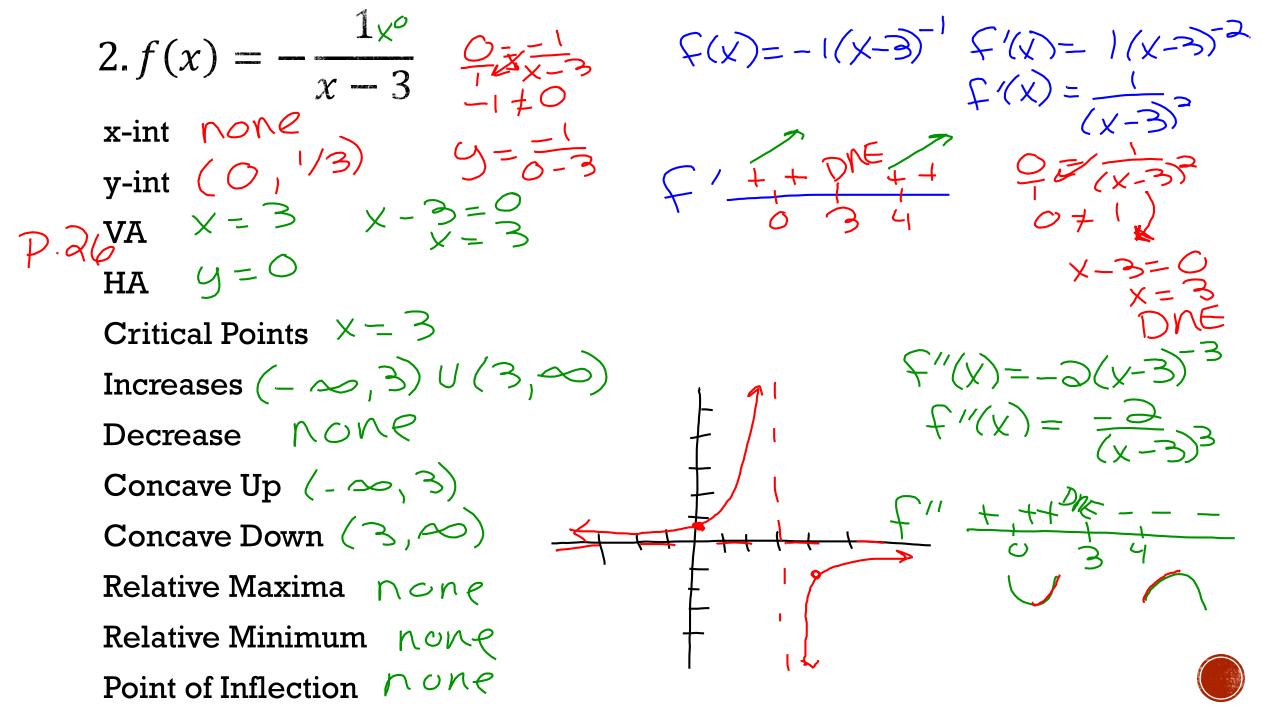
Intervals of Increase: Intervals where f'(x) is positive


Intervals of Decrease: Intervals where f'(x) is negative

RELATIVE/LOCAL EXTREMA: MAX AND MIN A local max occurs when f'(x) changes from + to – ·peak A local min occurs when f'(x) changes from – to + valley 3 *To find the Y-value, plug into $f(x)^{original}$

CONCAVITY

Concave Up – Occurs on the interval where f''(x) is positive


Concave Down – Occurs on the interval where f''(x) is negative $(-\infty, 2) \cup (5, \infty)$

POINTS OF INFLECTION (POI)

A POSSIBLE point of inflection occurs where f''(x) = 0 or DNE but is in the domain of f

The actual point of inflection occurs when f''(x)changes signs. where concavity changes Plug into f(x) to get Y-coordinat (original) $1. f(x) = -x^2 - 4x$ 5'(x)=-2x-4 $\sum -x^2 l/x$ 0---2x-4 x = - 2 E critical pt x-int (0,0)(-4,0) $O = - \times (\times + i)$ y-int (0,0) VA none none HA $f(-a) = -(-a)^2 - 4(-a)$ Critical Points X = -2f(-a) = 4Increases $(-\infty, -2)$ $\zeta''(\chi) = -2$ Decrease (- 2, 20) Concave Up None Concave Down $(-\infty,\infty)$ Relative Maxima (- 2, 4)Relative Minimum $\wedge \circ \wedge \checkmark$ Point of Inflection ne

t'(x)=====x=-x; 3.f(x) =0=x(-=xx-int (0,0) (-3,0)x=0 -==x=1-2 _6-1x-1-6 y-int (0,0) VA none $+\frac{1}{10}-\frac{2}{10}$ HA NONQ Critical Points $\chi = \mathcal{O} \times = -\mathcal{D}$ $-\frac{412}{40} = -\frac{4}{6} = -\frac{2}{3}$ Increases (-a, c) Decrease $(-\infty, -3) \cup (0, \infty)$ Concave Up $(-\infty, -1)$ - X -Concave Down $(-1)^{(-1)}$ Relative Maxima (\circlearrowright , \circlearrowright) POZ Relative Minimum (-2, -2/2)Point of Inflection $\langle - \rangle$, $-\frac{1}{3}$.