InTERPRETING GRAPHS USIIG DERIVATIVES

Honors Calculus
Keeper 23

INTERCEPTS

-X-intercept(s): plug in a 0 for y and solve for x
-Y-intercept: plug in a 0 for x and solve for y

CRITICAL POINTS

We say that $\mathrm{x}=\mathrm{c}$ is a critical point of the function $f(x)$ if $f(c)$ exists and if either of the following are true:

$$
\begin{gathered}
\text { set } f^{\prime}=0 \\
\text { osolue } \\
\text { for } x
\end{gathered} f^{\prime}(c)=0 \text { or } f^{\prime}(c)=\mathrm{DNE}
$$

***If a point is not in the domain of the function then it is not a critical point.

INTERVALS OF INCREASE AND DECREASE

*Make an f' line using the critical points \& undefined values of f. Then plug in numbers to $f^{\prime}(x)$ to find out + or -

Intervals of Increase: Intervals where $f^{\prime}(x)$ is positive
($-\infty,-2$)

Intervals of Decrease: Intervals where $f^{\prime}(x)$ is negative

RELATIVE/LOCAL EXTREMA: MAX AND MIN A local max occurs when $f^{\prime}(x)$ changes from + to peak

A local min occurs when $f^{\prime}(x)$ changes from - to + valley
*To find the \underline{Y}-value, plug into $\underline{f(x)})^{\circ r i g i n a l}$

CONCAVITY

Concave Up - Occurs on the interval where $f^{\prime \prime}(x)$ is positive

Concave Down - Occurs on the interval where $f^{\prime \prime}(x)$ is negative

POINTS OF INFLECTION (POI)

A POSSIBLE point of inflection occurs where $f^{\prime \prime}(x)=0$ or DNE but is in the domain of f

$$
f^{\prime \prime} \cdot \frac{+t 0-1}{\cup-2 \wedge}
$$

The actual point of inflection occurs when $f^{\prime \prime}(x)$ changes signs. where con cavity changes

$$
\text { Plug into } \underset{\text { (original) }}{f(x)} \text { get } y \text {-coordinate }
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { 2. } f(x)=-\frac{1 x^{0}}{x-3} & \frac{0}{1}-\frac{1}{x-3} \\
\text { x-int none } & f(x)=-1(x-3)^{-1} \\
f^{\prime}(x)=1(x-3)^{-2} \\
f^{\prime}(x)=\frac{1}{(x-3)^{2}}
\end{array} \\
& y \text {-int }(0,1 / 3) \quad y=\frac{-1}{0-3} \\
& \text { P. } 26 \text { VA } \quad x=3 \quad x-3=0 \\
& \text { HA } y=0 \\
& \begin{array}{c}
0=\frac{1}{(x-3)^{2}} \\
0 \neq 1
\end{array} \\
& \begin{aligned}
x-3 & =0 \\
x & =3
\end{aligned} \\
& \text { DeE } \\
& \text { Critical Points } x=3 \\
& f^{\prime \prime}(x)=-2(x-3)^{-3} \\
& f^{\prime \prime}(x)=\frac{-2}{(x-3)^{3}} \\
& \frac{+1+\begin{array}{l}
\text { Db } \\
1
\end{array}-\cdots-}{0^{3}} \\
& \text { Decrease none } \\
& \text { Concave Up (}-\infty, 3 \text {) } \\
& \text { Concave Down }(3, \infty) \\
& \text { Relative Maxima none } \\
& \text { Relative Minimum none } \\
& \text { Point of Inflection none }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 3. } f(x)=-\frac{x^{3}}{6}-\frac{x^{2}}{2}=-\frac{1}{6} x^{3}-\frac{1}{2} x^{2} \\
x-\operatorname{int}(0,0)(-3,8)
\end{array} \\
& \begin{array}{ll}
\text { y-int }(0,0) & 0=x^{2}\left(-\frac{1}{2} x-\frac{1}{2}\right) \\
\sqrt{x^{2}}=\sqrt{0}-\frac{1}{6} x-\frac{1}{2}=0 \\
x=0
\end{array} \\
& \text { VA none }+1-\frac{3}{6}-6,-\frac{1}{6} x=\frac{1}{2}-6 \\
& f^{\prime}(x)=\frac{-1}{2} x^{2}-x^{\prime} \\
& 0=x\left(-\frac{1}{2} x-1\right) \\
& x=0 \quad-\frac{1}{2} x-1=0 \\
& -\frac{1}{2} x=1-2 \\
& x=-2 \\
& \text { HA none } \\
& \text { Critical Points } x=0 \quad x=-2 \\
& \text { Increases }(-2,0) \\
& \frac{+8}{6}-\frac{4}{6} 6=\frac{-4}{6}=-\frac{2}{3} \\
& \text { Decrease }(-\infty,-\partial) \cup(0, \infty) \\
& \text { Concave Up }(-\infty,-1) \\
& \text { Concave Down (}-1, \infty \text {) } \\
& \text { Relative Maxima (} 0,0 \text {) } \\
& \text { Relative Minimum }(-2,-2 / 3) \\
& \text { 8) } \begin{array}{r}
\frac{+8}{6}-\frac{4}{6} 6=-\frac{4}{6}= \\
f^{\prime \prime}=-x-1 \\
-x-1=0 \\
-x=1 \\
\text { 3) }=-1
\end{array} \\
& \text { Point of Inflection }(-1,-1 / 3)
\end{aligned}
$$

