Mid-Term Review

1. Find the domain of $f(x)=\frac{1}{\sqrt{5-3 x}}$
2.

Evaluate $f(x)=\left\{\begin{array}{c}5 x-8, x<7 \\ \sqrt{x-7}, 7 \leq x<12 \\ \frac{4}{x}, x \geq 12\end{array}\right.$
for $f(3), f(7), \& f(12)$.
5. Find the horizontal \& vertical asymptote of $f(x)=$ $\frac{3 x^{2}+2 x-16}{x^{2}-4}$
7. Let f be defined as follows:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-25}{x+5}, \quad \text { for } x \neq-5 \\
3, & \text { for } x=-5
\end{array}\right.
$$

Which of the following are true about f ?
I. $\quad f(x)$ is continuous at $x=-5$
II. $\lim _{x \rightarrow-5} f(x)$ exists
III. $\quad f(-5)$ exists
9. Given a function is defined by $f(x)=\frac{2 x+2}{x^{2}+5 x+4}$, for what value(s) of x does the function have one or more vertical asymptotes?
2. What is the average rate of change of $f(x)=$ $\frac{1}{x+2}$ over $[-3,2]$?
4. Find the exact value of $\cos \frac{3 \pi}{4}, \tan \frac{7 \pi}{6}, \& \sin \frac{5 \pi}{3}$.
6. If $f(x)=2 x^{2}+1$ and $g(x)=x+2$, then find $(f \circ g)(x)=$
8. $f(x)= \begin{cases}x^{2}, & \text { for } x>2, \\ 5 a x, & \text { for } x \leq 2\end{cases}$

For what value of a is the function continuous?
10. Given a function defined by $f(x)=\frac{2 x+1}{x^{2}+5 x+4}$, for what values of x is the function discontinuous?
11. $\lim _{x \rightarrow-5} \frac{-1}{(x+5)^{2}}=$
13. $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=$
15. $\lim _{x \rightarrow-2^{-}} \frac{|x+2|}{x+2}=$
17. If $f(x)=-\frac{4}{\sqrt[4]{x}}$, then $f^{\prime}(16)=$
19. If $y=-\frac{4}{\sqrt[3]{x+5}}$, then $\frac{d y}{d x}=$
21. Find the derivative of $y=\left(x^{2}+2 x+5\right)^{6}$
14. $\lim _{x \rightarrow 0} \frac{\sqrt{x+25}-5}{x}=$
16. $\lim _{x \rightarrow \infty} \frac{x^{2}-x}{-4 x}=$
18. Find the derivative, $\frac{d y}{d x}$, of $y=\frac{3 x}{x^{2}+1}$
20. Find the derivative of $y=\sqrt[3]{x^{2}+x}$
22. Find $f^{\prime}(x)$ fiven $f(x)=\sin ^{3}(4 x)$
23. Given $y=\sin \left(2 x^{5}\right)$, then $\frac{d y}{d x}=$
25. Find $\frac{d y}{d x}$ if $y=x^{2} \cdot e^{x}$
27. If $y=e^{x^{4}-3 x^{2}}$, then $y^{\prime}=$
29. $\frac{d}{d x} \ln \left(e^{4 x^{2}}+3\right)$
31. If $y=\ln \left(2 x^{2}-5\right)$, then $\frac{d y}{d x}=$
24. If $y=\cos \left(e^{x}\right)$, then $\frac{d y}{d x}=$
26. Find $\frac{d}{d x}$ given $\mathrm{y}=\ln \frac{5}{5-x}$
28. $\frac{d}{d x} e^{\ln (\cos x)}=$
30. Find $\frac{d y}{d x}$ given $y=\frac{x^{3}}{3^{x}}$
32. Find $\frac{d^{2} y}{d x^{2}}$ for $y=\ln 5 x^{2}$
33. Find the slope of the tangent line to the graph $f(x)=2 x\left(2 x^{2}-1\right)$ at the point where $x=1$
35. Find the critical numbers of $f(x)=x^{3}-12 x^{2}$
37. The figure shows the graph of $f f^{\prime}$, the derivative of the function f. The domain of the function f is $-10 \leq x \leq 10$. For what value(s) does the function have a relative maximum?

39. A particle's motion is described by $x(t)=4 t^{3}-$ $5 t^{2}, t \geq 0$, where t is in seconds and distance in meters. Find the velocity in the third second.
34. Find an equation of the tangent line to the curve $f(x)=-x^{2}+12$ passing through the point $(4,0)$
36. Let $f(x)=x^{2}(x-3)$. Over what interval is the function decreasing?
38. Refer to the previous figure. For what value(s) does the function have a relative minimum?
40. The position of a particle moving in a straight line at any time t is $x(t)=2 t^{2}+6 t+5$. What is the acceleration of the particle at $t=3$?
41. Find all points of inflection for $f(x)=x^{4}-4 x^{3}+2$
43. Given that $f(x)=\frac{4}{x}$, determine where the function is concave up and concave down.
45. Find the point of inflection of $f(x)=x^{3}-3 x^{2}-$ $x+7$
47. The figure shows the graph of f^{\prime}, the derivative of the function f. The domain of the function f is $-10 \leq x \leq 10$. For what value(s) does the function have a relative minimum?

42. Find the interval(s) on which the curve $y=x^{3}-$ $3 x^{2}-9 x+6$ is concave upward or concave downward.
44. Given that $f(x)=-x^{2}+12 x-34$ has a relative maximum at $x=6$, determine where $f^{\prime}(x)$ is positive and negative.
46. Given a function defined by $f(x)=3 x^{5}-5 x^{3}-$ 8 , for what value(s) of x is there a point of relative minimum?
48. Refer to the previous figure. For what value(s) does the function have a relative maximum?
49. The graph $f(x)$ has horizontal tangents when $x=$

51. A ladder 10 feet long is leaning against a wall, with the foot of the ladder 8 feet away from the wall. I the foot of the ladder is being pulled away from the wall at $3 \mathrm{ft} / \mathrm{sec}$ how fast is the top of the ladder sliding down the wall?
53. A farmer has 20 feet of fence, and he wishes to make from it a rectangular pen for his pig Wilbur, using a barn as one of the sides. In square feet, What is the maximum area possible for his pet?
55. A rectangle is inscribed between the parabola $y=$ $7-x^{2}$ and the x-axis, with its base on the x-axis. Find the value of x that maximizes the area of the rectangle.
50. The graph of the derivative is shown. Draw the graph of f.

52. Find all value(s) of x (if any) that satisfy the conclusion of the Mean Value Theorem for the function $f(x)=\frac{1}{1+x}$ on the interval $[0,1]$.
54. One person is walking south toward an intersection that is 60 ft away at a rate of $2 \mathrm{ft} / \mathrm{s}$ while a second person on a bicycle is riding east away from the same intersection at $10 \mathrm{ft} / \mathrm{s}$. If the bicyclist is 80 ft from the intersection, how fast is the distance between he and the person walking increasing?
56. A circular conical reservoir, vertex down, has a depth 20 ft and radius of the top 10 ft . Water is leaking out so that the surface is falling at the rate of $1 / 2 \mathrm{ft} / \mathrm{hr}$. Find the rate, in cubic feet per hour, at which the water is leaving the reservoir when the water is 8 feet deep.

