Mid-Term Review

1. Find the domain of $f(x)=\frac{1}{\sqrt{3+2 x}}$
2. Describe the symmetry of $y=|x|-2$
3. Find the horizontal asymptote of $f(x)=\frac{3 x^{2}+2 x-16}{x^{2}-7}$
4. If $f(x)=2 x^{2}+1$ and $g(x)=x+2$, then $(f \circ$ $g)(x)=$
5. $\lim _{x \rightarrow 3} \frac{x^{2}-8 x+15}{(x-3)^{2}}=$
6. What is the range of $f(x)=3(x-2)^{2}+5$?
7. Describe the symmetry of $f(x)=\frac{x^{2}}{x^{2}+1}$
8. Find the vertical asymptote of $y=\frac{2}{x-3}$
9. If $f(x)=\frac{2 x+1}{3}$, find $f^{-1}(x)$
10. $\lim _{x \rightarrow 27} \frac{\left(x^{\frac{1}{3}}-3\right)}{x-27}=$
11. $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=$
12. Given a function is defined by $f(x)=\frac{2 x+2}{x^{2}+5 x+4}$, for what value(s) of x does the function have one or more vertical asymptotes?
13. If $f(x)=-\frac{4}{\sqrt[4]{x}}$, then $f^{\prime}(16)=$
14. If $y=-\frac{4}{\sqrt[3]{x+5}}$, then $\frac{d y}{d x}=$
15. Find the derivative of $y=\left(x^{2}+2 x+5\right)^{6}$
16. $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=$
17. Given a function defined by $f(x)=\frac{2 x+1}{x^{2}+5 x+4}$, for what values of x is the function discontinuous?
18. Find the derivative of $y=\sqrt[3]{x^{2}+x}$
19. Find $f^{\prime}(x)$ for $f(x)=\left(2 x^{2}+5\right)^{7}$
20. Given $y=\sin (\sin x)$, then $\frac{d y}{d x}=$
21. Find $f^{\prime}(x)$ fiven $f(x)=\sin ^{3}(4 x)$
22. Find $\frac{d y}{d x}$ if $y=x^{2} \cdot e^{x}$
23. If $y=e^{\frac{1}{x}}$, then $y^{\prime}=$
24. $\frac{d}{d x} \ln \left(e^{x^{2}}\right)$
25. If $y=\cos \left(e^{x}\right)$, then $\frac{d y}{d x}=$
26. Given $y=\sin ^{2} x^{3}$, then $\frac{d y}{d x}=$
27. $\frac{d}{d x} \ln \frac{5}{5-x}=$
28. $\frac{d}{d x} e^{\ln 5 x}=$
29. Find $\frac{d y}{d x}$ given $y=\frac{x^{3}}{3^{x}}$
30. If $y=\log _{3}\left(2 x^{2}-5\right)$, then $\frac{d y}{d x}=$
31. Find the slope of the tangent line to the graph f $f(x)=2 x\left(2 x^{2}-1\right)$ at the point where $x=1$
32. Find the critical numbers of $f(x)=x^{3}-12 x^{2}$
33. The figure shows the graph of $f f^{\prime}$, the derivative of the function f. The domain of the function f is $-10 \leq x \leq 10$. For what value(s) does the function have a relative maximum?

34. Find $\frac{d^{2} y}{d x^{2}}$ for $y=\frac{1-x}{x-3}$
35. Find an equation of the tangent line to the curve $f(x)=-x^{2}+12$ passing through the point $(4,0)$
36. Let $f(x)=x^{2}(x-3)$. Over what interval is the function decreasing?
37. Refer to the previous figure. For what value(s) does the function have a relative minimum?
38. A particle's motion is described by $x(t)=4 t^{3}-5 t^{2}$, $t \geq 0$, where t is in seconds and distance in meters. Find the velocity in the third second.
39. Find all points of inflection for $f(x)=x^{4}-4 x^{3}+2$
40. Given that $f(x)=\frac{4}{x}$, determine where the function is concave up and concave down.
41. Find the point of inflection of $f(x)=x^{3}-3 x^{2}-$ $x+7$
42. The position of a particle moving in a straight line at any time t is $x(t)=2 t^{2}+6 t+5$. What is the acceleration of the particle at $t=3$?
43. Find the interval(s) on which the curve $y=x^{3}-$ $3 x^{2}-9 x+6$ is concave upward or concave downward.
44. Given that $f(x)=-x^{2}+12 x-34$ has a relative maximum at $x=6$, determine where $f^{\prime}(x)$ is positive and negative.
45. Given a function defined by $f(x)=3 x^{5}-5 x^{3}-$ 8 , for what value(s) of x is there a point of relative minimum?
46. The figure shows the graph of f^{\prime}, the derivative of the function f. The domain of the function f is $-10 \leq x \leq 10$. For what value(s) does the function have a relative minimum?

47. The graph $f(x)$ has horizontal tangents when $x=$

48. A ladder 10 feet long is leaning against a wall, with the foot of the ladder 8 feet away from the wall. I the foot of the ladder is being pulled away from the wall at $3 \mathrm{ft} / \mathrm{sec}$ how fast is the top of the ladder sliding down the wall?
49. A farmer has 20 feet of fence, and he wishes to make from it a rectangular pen for his pig Wilbur, using a barn as one of the sides. In square feet, What is the maximum area possible for his pet?
50. Refer to the previous figure. For what value(s) does the function have a relative maximum?
51. The graph of the derivative is shown. Draw the graph of f.

52. Find all value(s) of x (if any) that satisfy the conclusion of the Mean Value Theorem for the function $f(x)=\frac{1}{1+x}$ on the interval $[0,1]$.
53. Find the shortest distance from the point $(4,0)$ to a point on the parabola $y^{2}=2 x$.
54. A rectangle is inscribed between the parabola $y=$ $7-x^{2}$ and the x-axis, with its base on the x-axis. Find the value of x that maximizes the area of the rectangle.
55. A circular conical reservoir, vertex down, has a depth 20 ft and radius of the top 10 ft . Water is leaking out so that the surface is falling at the rate of $1 / 2 \mathrm{ft} / \mathrm{hr}$. Find the rate, in cubic feet per hour, at which the water is leaving the reservoir when the water is 8 feet deep.
56. One person is walking south toward an intersection that is 60 ft away at a rate of $2 \mathrm{ft} / \mathrm{s}$ while a second person on a bicycle is riding east away from the same intersection at $10 \mathrm{ft} / \mathrm{s}$. If the bicyclist is 80 ft from the intersection, how fast is the distance between he and the person walking increasing?

For Questions 58-61. Suppose that the functions f and g have values according to the following table.

	f	f^{\prime}	g	g^{\prime}
-1	4	7	2	3
2	3	5	4	1

58. What is the value of the derivative of $f(g(x))$ and $x=-1$
59. Evaluate $\frac{d}{d x}[f(x) g(x)]_{x=2}$
60. Evaluate $\frac{d}{d x}\left[g^{-1}(x)\right]_{x=2}$
