ONE-SIDED LIMITS

Keeper 9
Honors Calculus

FINDING ONE-SIDED LIMITS

One-Sided limits are the same as normal limits, we just restrict x so that it approaches from just one side.
$x \rightarrow a^{+}$means x is approaching from the right $x \rightarrow a^{-}$means x is approaching from the left

REVIEW: FIND THE LIMIT

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} f(x)=3 \\
& \lim _{x \rightarrow 3^{-}} f(x)=2 \\
& \lim _{x \rightarrow 3} f(x)=D \wedge E
\end{aligned}
$$

FIND THE LIMIT: EX 1

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{+}} \frac{x-5}{x^{2}-25} \quad \frac{5-5}{(5)^{2}-25}=0 \quad \begin{array}{c}
\text { Dre by } \\
\text { divel Sust } \\
\text { but Ne. } \\
\text { but } \\
\text { simplafy }
\end{array} \\
& \lim _{x \rightarrow 5^{+}} \frac{x-5}{(x+5)(x-5)^{2}}{ }^{\text {nole irion } x \rightarrow 5^{4}} \frac{1}{x+5}=\frac{1}{5+5}=\frac{1}{10}
\end{aligned}
$$

FIND THE LIMIT: EX 2

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \begin{array}{ll|l}
\frac{x}{0} & \begin{array}{l}
y \\
-1 \\
-1 \\
-1 \\
-1 \\
-2
\end{array} & -1 \\
-2 & -1
\end{array}
$$

FIND THE LIMIT: EX 3

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1 \quad \lim _{x \rightarrow 2} \frac{3 x+6}{} \frac{\frac{3 x+10 \mid}{|5 x+1|}}{\frac{-3(x+2) \mid}{5(x+2)}}
$$

EX 4

EX 5

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow-3^{+} \\
-2999 \\
\text { on the } \\
\text { sisho }}} \frac{-5 x^{2}-1}{x^{2}-9} \quad \frac{-5(-2.999)^{2}-1}{(x+3)(x-3)} \\
& \begin{array}{l}
\text { on the right } \quad \text { SA: } x=-3+3 \\
\text { Side off }
\end{array} \\
& =7662.9 \text { which } \\
& \text { is reallybig so } \\
& +\infty
\end{aligned}
$$

EX 6
a) $\lim _{\substack{x \rightarrow 0 \\ 0 \lll}} f(x)=(0)^{2}+1=$ (1) $\lim _{x \rightarrow-2 \geq 2} f(x)=-2(2)+4=0$

c) $\lim _{x \rightarrow 2^{+}} f(x)=(2-2)^{2}+1=(1)$

FIND THE LIMIT

$$
\lim _{x \rightarrow 5^{+}} \frac{3 x-15}{|4 x-20|}
$$

continuous functions

The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.

$f(x)$ is continuous for all X

TYPES OF DISCONTINUTYY

A function has an Infinite discontinuity at $X=c$ If the function value increases or decreases indefinittely as x approaches of from the left and right.

Example

A function has a Jump discontinuity at $X=c$ If the limits of the function as x approaches c from the left and righit oxist but have two distlinct values.

Example

A function has a removable dilscontinulty if the function ls continuous everywhere except for a hole at $x=c$.

Example

continuity TEST

A function $f(x)$ is continuous at $x=c$ if it satisfies the following conditions.

$$
\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c} f(x)=f(c)
$$

UNDERSTANDING CONTINUITY

a. Does $f(5)$ exist?
b. Does $\lim _{x \rightarrow 5} f(x)$ exist?
c. Is $f(x)$ continuous at $x=5$? Justify.
d. What new value should be assigned to $f(5)$ to remove the discontinuity?

UNDERSTANDING CONTINUITY

e. Does $f(2)$ exist?
f. Does $\lim _{x \rightarrow 2} f(x)$ exist?

UNDERSTANDING CONTINUITY

g. Does $f(-5)$ exist?
h. Does $\lim _{x \rightarrow-5} f(x)$ exist?
i. Is $f(x)$ continuous at $x=-5$? Justify.
j. What new value should be assigned to $f(-5)$ to make $f(x)$ continuous at $x=-5$?

UNDERSTANDING CONTINUTTY

k. Is $f(x)$ right continuous, left continuous, or neither at $x=2$? How about for $x=7$?

1. List all places where $f(x)$ is discontinuous and state the type of discontinuity.

IDENTIFY THE TYPE OF DISCONTINUITY IN THE FOLLOWING EQUATIONS

a. $h(x)=\frac{6}{x-3}$
b. $\quad p(x)= \begin{cases}3 x-1, & \text { if } x \geq 1 \\ 4 x-2, & \text { if } x<1\end{cases}$
c. $m(x)=\left\{\begin{array}{ll}2 x-5, & \text { if } x \geq 2 \\ 3 x, & \text { if } x<2\end{array} \quad k(x)=\frac{6 x-2}{9 x-3}\right.$
e. $j(x)=\frac{2 x-4}{x^{2}-2 x}$

FINDING VALUES FOR DISCONTINUITY

Find a value for a so that $f(x)$ is continuous.

$$
f(x)= \begin{cases}2 x+3, & \text { if } x \leq 2 \\ a x+1, & \text { if } x>2\end{cases}
$$

FINDING VALUES FOR DISCONTINUITY

Find a value for k so that $g(x)$ is continuous.

$$
g(x)=\left\{\begin{array}{cc}
4 x-7 k, & \text { if } x \geq-3 \\
2 k+x, & \text { if } x<-3
\end{array}\right.
$$

COMPLETE THE TABLE

	$\boldsymbol{f}(\boldsymbol{x})$	Discontinuity at:	Type of discontinuity (Be Specific):
l.	$\frac{4}{x^{2}-1}$		
2.	$\begin{cases}x^{2}, \quad x \geq 0 \\ -3, & x<0\end{cases}$		
3.	$\frac{x^{2}-x-12}{x-4}$	$\frac{x-3}{x^{2}-9}$	
4.			

