Keeper 5.1 Virtual Problems

Definition – Linearization

If *f* is differentiable at x = a, then the equation of the tangent line

$$L(x) = f(a) + f'(a)(x - a)$$

Defines the linearization approximation of f at a. The point x = a is the center of the approximation.

Examples

1. Find the linearization of $f(x) = \sqrt{1-x}$ at x = 0, and use it to approximate $\sqrt{1.02}$ without a calculator. Check the accuracy of your estimate on your calculator.

2. Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$ and use it to approximate $\cos(1.75)$ without a calculator.

3. Find the linearization of $y = x + \frac{1}{x}$ at x = 1. Explain what your answer tells you about the function.

4. Use linearization to approximate $\sqrt{68}$.

Independent Practice

Linearly approximate the following number. In each case, determine an appropriate function f(x) and a point (a, f(a)) where the tangent line meets the graph. Determine if your linear approximation (also known as local linearization) overestimates or underestimates the true value.

1. tan 3.1

2. $\sqrt[3]{28}$

3. √<u>9.2</u>

4. sin 0.2

5. $16.1^{\frac{1}{4}}$