Keeper 5.1 Virtual Problems

Definition - Linearization
If f is differentiable at $x=a$, then the equation of the tangent line

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Defines the linearization approximation of f at a. The point $x=a$ is the center of the approximation.

Examples

1. Find the linearization of $f(x)=\sqrt{1-x}$ at $x=0$, and use it to approximate $\sqrt{1.02}$ without a calculator. Check the accuracy of your estimate on your calculator.
2. Find the linearization of $f(x)=\cos x$ at $x=\frac{\pi}{2}$ and use it to approximate $\cos (1.75)$ without a calculator.
3. Find the linearization of $y=x+\frac{1}{x}$ at $x=1$. Explain what your answer tells you about the function.
4. Use linearization to approximate $\sqrt{68}$.

Independent Practice

Linearly approximate the following number. In each case, determine an appropriate function $f(x)$ and a point ($a, f(a)$) where the tangent line meets the graph. Determine if your linear approximation (also known as local linearization) overestimates or underestimates the true value.

1. $\tan 3.1$
2. $\sqrt[3]{28}$
3. $\sqrt{9.2}$
4. $\sin 0.2$
5. $16.1^{\frac{1}{4}}$
