THE FUNDAMENTAL THEOREM OF CALCULUS cont

Keeper 30
Honors Calculus

THE FUNDAMENTAL THEOREM OF CALCULUS

昭他多
If f is continuous on an open interval I containing a ， then，for every x in the interval，

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

THE LONG WAY...

$$
\begin{aligned}
& \text { 1. } \frac{d}{d x} \int_{1}^{x} t^{2} d t \\
& \left.\frac{d}{d x} \frac{t^{3}}{3}\right|_{1} ^{x} \\
& \frac{d}{d x}\left(\frac{x^{3}}{3}-\frac{13}{3}\right) \\
& \frac{d}{d x}\left(\frac{1}{3} x^{3}-\frac{1}{3}\right) \\
& 1 x^{2}-0=x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \frac{d}{d x} \int_{3}^{x} \sin t d t \\
& \frac{d}{d x}-\left.\cos t\right|_{3} ^{x} \\
& \frac{d}{d x}(-\cos x+\cos 3) \\
& \sin x+0 \\
& \sin x
\end{aligned}
$$

SHORT CUT...

-When x is the upper limit and a constant is your lower limit, you can just plug in x for t .

EXAMPIES WITH SHORT CUT...

1. $\frac{d}{d x} \int_{-3}^{\infty} \sqrt{t^{2}+1} d t$
2. $\frac{d}{d x} \int_{2}^{(x)} \csc ^{2} t d t$
$\sqrt{x^{2}+1}$

EXAMPLE 3

$$
\begin{aligned}
& \frac{d}{d x} \int_{x}^{2} \sin t^{2} d t \\
& \frac{d}{d x} \int_{2}^{x} \sin t^{2} d t \\
& -\sin x^{2}
\end{aligned}
$$

MORE SOPHISTICATED USE OF ETC...

$$
\text { 1. } \begin{aligned}
& \frac{d}{d x} \int_{\frac{\pi}{2}}^{x^{3}} \cos t d t \\
&\left.\frac{d}{d x} \sin t\right|_{\pi / 2} ^{x^{3}}= \begin{array}{l}
\frac{d}{d x}\left(\sin \left(x^{3}\right)-\sin \pi / 2\right) \\
\\
\\
\\
\\
\\
\\
\\
\end{array} \quad \begin{aligned}
\text { cos }\left(x^{3}\right) 3 x^{2} \cos \left(x^{3}\right)
\end{aligned}
\end{aligned}
$$

SHORT CUT...

When something other than just x is the upper limit and a constant is still your lower limit, then...
-Plug the upper limit into the function for t -Take the derivative of the upper limit.

EXAMPLE WITH SHORT CUT

1. $\frac{d}{d x} \int_{3}^{x^{2}} \sqrt{t^{2}-4 \sin t} d t$

$$
\text { 2. } \begin{aligned}
& \frac{d}{d x} \int_{x^{3}}^{3} \frac{1}{t^{2}} d t \\
&-\frac{d}{d x} \int_{3}^{x^{3}} \frac{1}{t^{2}} d t=-\frac{1}{\left(x^{3}\right)^{2}} \cdot \frac{3 x^{2}}{1} \\
&-\frac{1}{x^{6}} \cdot \frac{3 x^{2}}{1}=\frac{-3 x^{2}}{x^{6}}=\frac{-3}{x^{4}}
\end{aligned}
$$

EXAMPLE - CANT IGNORE THE LOWER WHEN IT ISNT A CONSTANT

$$
\begin{aligned}
& \frac{d}{d x} \int_{3 x}^{4 x^{2}} \frac{4 t}{1+t^{2}} d t \begin{array}{c}
\text { short cut } \\
\text { wlupper }
\end{array} \\
& \frac{4\left(4 x^{2}\right)}{1+\left(4 x^{2}\right)^{2}} \cdot \frac{8 x^{1}}{1}-\frac{4(3 x)}{\left.1+(3 x)^{2}\right)^{2}} \cdot 3 \\
& \frac{128 x^{3}}{1+16 x^{4}}-\frac{36 x}{1+9 x^{2}}
\end{aligned}
$$

