Keeper 3.3 - Interpreting the Derivative Virtual Problems

Script:

The instantaneous rate of change in " y " (in context) when " x " (in context with value) is "derivative" (in context with units) **Make it sound good!!

1. If $q=f(p)$ gives the number of pounds of sugar produced when the price per pound is p dollars, then what are the units and the meaning of the statement $f^{\prime}(3)=50$?
2. The cost, C (in dollars) to product g gallons of ice cream can be expressed as $C=f(g)$. Using units, explain the meaning of the following statements in terms of ice cream.
(a) $f(200)=350$
(b) $f^{\prime}(200)=1.4$
3. For some painkillers, the size of the dose, D , given depends on the weight of the patient, W. Thus, $D=f(W)$, where D is in milligrams and W is in pounds.
(a) Interpret the statements $f(140)=120$ and $f^{\prime}(140)=3$ in terms of this painkiller.
(b) If $f^{\prime}(5)=-3$, what are the units of 5 ? What are the units of -3 ? What does this statement tell us?
4. The time for a chemical reaction, T (in minutes), is a function of the amount of catalyst present, a (in milliliters), so $T=$ $f(a)$.
(a) If $f(5)=18$, what are the units of 5 ? What are the unit of 18 ? What does this statement tell us about the reaction?
(b) Use the information in the statements in part (a) to estimate $f(145)$.
5. Let $f(t)$ be the number of centimeters of rainfall that has fallen since midnight, where t is the time in hours. Interpret the following in practical terms, giving units.
(a) $f(10)=3.1$
(b) $f^{-1}(10)=16$
(c) $f^{\prime}(8)=0.4$
(d) $\left(f^{-1}\right)^{\prime}(5)=2$
6. The surface area S (in square meters) of a balloon is expanding as a function of time t (in seconds) according to $S=S(t)=$ $5 t^{2}$. Find the rate of change of the surface area of the balloon with respect to time. What are the units of $S^{\prime}(t)$?
7. Oil is leaking from a tank. The amount of oil, in gallons, in the tank is given by $G(t)=4000-3 t^{2}$, where $0 \leq t \leq 24$ is the number of hours past midnight.
a. Find $G^{\prime}(5)$ using the definition of the derivative
b. Using appropriate units, interpret the meaning of $G^{\prime}(5)$ in the context of the problem
