Keeper 3.1 - The Average Rate of Change \& Definition of a Derivative at a Point Virtual Practice Problems

1. If a rock falls from the roadway, the function $s=f(t)=16 t^{2}$ gives the distance s, in feet, that the rock falls after t seconds for $0 \leq t \leq 7.458$. Here $7.458 s$ is the approximate time it takes the rock to fall 890 ft into the river. Find the average velocity of the rock during its fall.
2. Let $f(x)=x^{3}-x^{2}-6 x$. Find the average rate of change over [1,3].
3. Find the difference quotient of $f(x)=\sqrt{2 x}$ from $x=2$ to $x=8$

Examples: Find the Derivative at the Given Point
4. $f(x)=x^{2}-2$ at $x=0$
5. $\quad f(x)=\frac{1}{x}$ at $x=3$
6. $f(x)=\frac{1}{x^{2}}$ at $x=2$
7. $f(x)=\frac{1}{\sqrt{x}}$ at $x=9$

Find the Derivative of the function at the given point. Then find the equation of the tangent and normal line.
8. $f(x)=\sqrt{x}$ find the $f^{\prime}(3)$
9. $f(x)=4 x-3 x^{2}$ at $(2,-4)$
10. $f(x)=x^{3}-3 x+1$ at $(2,3)$
11. If a rock is thrown upward on the planet Mars with a velocity of $10 \mathrm{~m} / \mathrm{s}$, its height (in meters) after t seconds is given by $H=10 t-1.86 t^{2}$.
a. Find the velocity of the rock after one second.
b. Find the velocity of the rock when $t=a$
c. When will the rock hit the surface?
d. With what velocity will the rock hit the surface?

