Keeper 3.1 – The Average Rate of Change & Definition of a Derivative at a Point

Virtual Practice Problems

1. If a rock falls from the roadway, the function $s = f(t) = 16t^2$ gives the distance s, in feet, that the rock falls after t seconds for $0 \le t \le 7.458$. Here 7.458s is the approximate time it takes the rock to fall 890 ft into the river. Find the average velocity of the rock during its fall.

- 2. Let $f(x) = x^3 x^2 6x$. Find the average rate of change over [1,3].
- 3. Find the difference quotient of $f(x) = \sqrt{2x}$ from x = 2 to x = 8

Examples: Find the Derivative at the Given Point

4.
$$f(x) = x^2 - 2$$
 at $x = 0$
5. $f(x) = \frac{1}{x}$ at $x = 3$

6.
$$f(x) = \frac{1}{x^2}$$
 at $x = 2$
7. $f(x) = \frac{1}{\sqrt{x}}$ at $x = 9$

Find the Derivative of the function at the given point. Then find the equation of the tangent and normal line.

8. $f(x) = \sqrt{x}$ find the f'(3)9. $f(x) = 4x - 3x^2 at(2, -4)$

10. $f(x) = x^3 - 3x + 1$ at (2,3)

11. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height (in meters) after t seconds is given by $H = 10t - 1.86t^2$.

- a. Find the velocity of the rock after one second.
- b. Find the velocity of the rock when t = a
- c. When will the rock hit the surface?
- d. With what velocity will the rock hit the surface?