THE FUNDHMENTAL THEOREM OF CHLCULUS PART 2?: DEFINITE INTEGRALS

Keeper 29
Honors Calculus

REIMANN SUMS TO APPROXIMATE AREA
Find the area under the graph of $y=x^{2}+1$ over the interval $[-1,2]$.

$$
\begin{aligned}
& A=1(1.2+1.2+3.2) \\
& A=5.6
\end{aligned}
$$

THE FUNDAMENTAL THEOREM OF CALCULUS PART 2: DEFINITE INTEGRAL DEFINITION

If $\mathrm{F}(\mathrm{x})$ is the antiderivative of the continuous function $f(x)$ over the interval $[a, b]$, then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

STEPS FOR EVALUATING DEFINITE INTEGRALS

1. Find any antiderivative, $F(x)$, of $f(x)$.
2. Evaluate $F(x)$ using b and a, and compute $F(b)-F(a)$. The result is the area under the graph over the interval $[a, b]$.

NOW EVALUATE THE DEFINITE INTEGRAL
*This problem is read "the integral of $x^{2}+1$, with respect to x , from -1 to 2 ".

$$
\begin{array}{ll}
\text { from -1 to } 2^{\prime \prime} . & F(b)-F(a) \\
\int_{-1}^{2} x^{2}+1 d x & \left(\frac{2^{3}}{3}+2\right)-\left(\frac{(-1)^{3}}{3}-1\right) \\
\frac{x^{2+1}}{3}+\left.x\right|_{-1} ^{2} & \frac{8}{3}+2+\frac{1}{3}+1 \\
\frac{x^{3}}{3}+\left.x\right|_{-1} ^{2} & \frac{8}{3}+\frac{6}{3}+\frac{1}{3}+\frac{3}{3}=6
\end{array}
$$

1. EVALUATE $\int_{-1}^{4}\left(x^{2}-x\right) d x$

$$
\begin{gathered}
\frac{x^{3}}{3}-\left.\frac{x^{2}}{2}\right|_{-1} ^{4}=\left(\frac{43}{3}-\frac{4^{2}}{2}\right)=\left(\frac{\left(-1^{2}\right)}{3}-\frac{(-1)^{2}}{2}\right) \\
+\left(-\frac{1}{3}+\frac{1}{2}\right)^{2} \\
\frac{64}{3}-8=+\frac{1}{3}+\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2. EVALUETEL } \int_{0}^{3} e^{x} d x \\
& \qquad\left.e^{x}\right|_{0} ^{3}=e^{3}-e^{0}= \\
& e^{3}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. EVALUATE } \int_{1}^{e}\left(1+2 x-\frac{1}{x}\right) d x \quad(\text { assume } x>0) . \\
& \ln e \\
& \log _{e} e=1 \\
& \ln 1 \\
& \log _{e} 1=x+\frac{2 x^{1+1}}{2} \\
& e^{x}=1 \\
& x=0 \\
& x+x^{2}-\ln |x| \\
& \quad\left(e+e^{2}-\ln e\right)-\left(1+1^{2}-\ln 1\right) \\
& e+e^{2}-1-1-1+0=e+e^{2}-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. VVALUATR } \int_{2}^{4}\left(2 x^{3}-3 x\right) d x \\
& \frac{2 x^{4}}{24}-\left.\frac{3 x^{2}}{2}\right|_{2} ^{4} \\
& \left(\frac{44^{4}}{2}-\frac{3\left(44^{2}\right.}{2}\right)-\left(\frac{2(2)^{4}}{24}-\frac{\left.3(2)^{2}\right)}{2}\right)= \\
& 128-24-8+6=102)
\end{aligned}
$$

$$
\text { 5. EVALUATE } \begin{array}{rl}
\int_{0}^{\ln 4} 2 e^{x} d x \\
\left.2 e^{x}\right|^{\ln 4}= & 2 e^{(b)}-F(a) \\
0 & 2 e^{6} \\
& 2 \ln e^{4} \quad 2(1) \\
8-2=6
\end{array}
$$

6. EVALUATE $\int_{1}^{5} \frac{x-1}{x} d x$

Rewrite: $\int_{1}^{5} 1-\frac{1}{x} d x$
Integrate: $x-\left.\ln |x|\right|_{1} ^{5}$
Evaluate: $(5-\ln 5)-(1-\ln 1)$

$$
5-\ln 5-1+0=4-\ln 5
$$

7.

$$
\begin{aligned}
& \text { evaluate } \int_{\pi}^{5} \cos x d x \\
& \begin{aligned}
\left.\sin x\right|_{\pi} ^{5}= & \sin 5-\sin \pi \\
& \sin 5-0=\sin 5
\end{aligned}
\end{aligned}
$$

How: p. 6-7

$$
\left(-\frac{2}{3}, \frac{2}{21}\right)
$$

-Talk about if the smaller number is on top

$$
\int_{1}^{-2} x d x=-\int_{-2}^{1} x d x
$$

