RIEMANN SUMS

Keeper 27
Honors Calculus

WHAT IS AN INTEGRAL??? The AREA under a curve!!!

EXHMPLE - FIND $\int_{-3}^{6} f(x)$

$$
\text { EXAMPLE - FIND } \int_{-.5}^{2} f(x)
$$

RIEMANN SUMS

The process of using rectangles to approximate area

RIEMANN SUMS

$$
\int_{a}^{b} f(x) d x
$$

Right Riemann Sum (RRS)

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right]
$$

Left Riemann Sum (LRS)

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right]
$$

APPROXIMATE THE INTEGRAL USING THE RIGHT RIEMANN SUM METHOD - 5 SUBINTERVALS

$$
\begin{aligned}
& A=1(5+4+2+2+7) \\
& A=20
\end{aligned}
$$

APPROXIMATE THE INTEGRAL USING THE LEFT ENDPOINT METHOD - 10 SUBINTERVALS

$$
\begin{gathered}
\frac{1}{2}(2+4+5+4.8+4+3 \\
1.8+1.5+2+4) \\
A=16.05
\end{gathered}
$$

RIEMANN SUMIS

$$
\int_{a}^{b} f(x) d x
$$

Midpoint Riemann Sum (MRS)

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n}\left[f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{1}+x_{2}}{2}\right)+\cdots+f\left(\frac{x_{n-1}+x_{n}}{2}\right)\right]
$$

APPROXIMATE THE INTEGRAL USING THE MIDPOINT METHOD - 10 SUBINTERVALS

$$
\begin{aligned}
& A=\frac{1}{2}(3+4.6+5+4.5 \\
& 3.4+2.4+1.7+1.8 \\
& +2.6+4.6) \\
& A=16.8
\end{aligned}
$$

TRAPEZOID RULE

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x \approx \frac{1}{2} \cdot \frac{b-a}{n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{gathered}
$$

It is the average of the left and right sums and usually gives a better approximation than either does individually.

$$
\text { Area of Trapezoid }=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

APPROXIMATE THE INTEGRAL USING THE TRAPEZOID METHOD - 5 SUBINTERVALS

RIEMANN SUMS - 2 MORE METHODS

Circumscribed Method - Highest point in interval is used to create the rectangle.
(outside the curve)

Inscribed Method - Lowest Point in the interval is used to create the rectangle.
(inside the curve)

APPROXIMATE THE INTEGRAL USING THE CIRCUMSCRIBED METHOD - 手 SUBINTERVALS

$$
\begin{aligned}
& A=1(5+5+4+2+7) \\
& A=23
\end{aligned}
$$

APPROXIMATE THE INTEGRAL USING THE INSCRIBED METHOD - 10 SUBINTERVALS

$$
A=1(2+4+2+1.6)
$$

$$
A=11.6
$$

