CURVE SKPTCHING

Keeper 21
Honors Calculus

WHEN IS I GRAPH DIFFERENTIABLE

A graph is differentiable anywhere EXCEPT where there is the following :

- Cusp

- Corner
- Vertical Tangent

- Discontinuity
- Removable hole o
- Infinite

- Jump

STATE THE X VALUES WHERE f IS NOT DIFFERENTIABLE AND THE REASON

$$
\begin{aligned}
& \begin{array}{l}
x=-3 \text { cusp } \\
x=-1 \text { jump } \\
x=1 \\
x=2 \text { removable } \\
x=4 \text { confer }
\end{array} \quad 1
\end{aligned}
$$

STATE THE X VALUES WHERE f IS NOT DIFFERENTIABLE AND THE REASON

$$
\begin{aligned}
& x=-1 \text { vertical tangent } \\
& x=1 \text { jump } \\
& x=3 \text { corner }
\end{aligned}
$$

CRITICAL POINTS, CONCAVITY \& INFLECTION POINTS

Critical Points - the graph's turning points or the Local Max (peaks) \& Local Mins (valleys)

Inflection Points - a point on a graph where it changes concavity. l side is concave down \& 1 side is concave up

RELATIONSHIP BETWEEN $f, f^{\prime}, f^{\prime \prime}$

f	f^{\prime}	$f^{\prime \prime}$		
-Cusp				
-Corner				
-Discontinuity				
-Removable				
-Infinite				
-jump				
-Vertical Tangent			\quad DNE	DNE
:---:				
Local max, local min (local extrema), horizontal tangent				
f increasing				
f decreasing				
f concave up				
f concave down				
Positive (Above the x-axis)				

WHAT CAN WE SAY ABOUT $g, g^{\prime}, g^{\prime \prime}$ FOR EACH SEGMENT OF THE GRAPH $y=g(x)$

1.

WHAT CAN WE SAY ABOUT $g, g^{\prime}, g^{\prime \prime}$ FOR EACH SEGMENT OF THE GRAPH $y=g(x)$
3.

9': negative $\binom{$ below }{$x-a x i s} /$ decreasing
$g^{\prime \prime}$: negative (below x-axis)
4.
increasing conc : positive ($\binom{$ bower }{$x-a x i s} /$ dec . $9^{\prime \prime}$ negative (below)

WHAT CAN WE SAY ABOUT $g, g^{\prime}, g^{\prime \prime}$ FOR EACH SEGMENT OF THE GRAPH $y=g(x)$
5.

\qquad $g^{\prime \prime} \frac{++++1}{\text { concave up }} \frac{0}{0}$ concave down

* concavity tells you if and deriv. is + or -

WHAT CAN WE SAY ABOUT $g, g^{\prime}, g^{\prime \prime}$ FOR EACH SEGMENT OF THE GRAPH $y=g(x)$
6.

1. GRAPH THE PIRST DERIVATIVE

$$
\begin{aligned}
& m=-\frac{1}{2} \\
& f(x)=-\frac{1}{2} x+\frac{3}{2} \\
& f^{\prime}(x)=-\frac{1}{2}
\end{aligned}
$$

2. GRAPH THE FIRST DERIVATIVE

3. GRAPH THE FIRST DERIVATIVE

fl $\frac{-1+0+0,-0+1}{\text { below on above on below on above }} x$-axis

4. GRAPH THE FIRST DERIVATIVE

$$
f^{\prime} \frac{+++0,-0+++}{\text { above on below on above }}
$$

5. GRAPH THE PIRST DERIVITIVE

absolute value is 2 linear functions
6. GRIPH THE FIRST DERIVATIVE

7. GRAPH THE $\mathrm{P}^{\prime}(\mathrm{X})$ AND $\mathrm{F}^{\prime \prime}(X)$
$f \rightarrow$ quad.
$f^{\prime} \rightarrow$ linear.
$f^{\prime \prime} \rightarrow$ horiz

8. GRAPH THE P ${ }^{\prime}(\mathrm{X})$ AND $\mathrm{P}^{\prime \prime}(\mathrm{X})$

$$
\begin{aligned}
& f(x) \rightarrow 4 \text { critical } \\
& f^{\prime}(x) \rightarrow 3 \\
& f^{\prime \prime}(x) \rightarrow 2
\end{aligned}
$$

GRAPH THE FIRST DERIVATIVE

GRAPH THE FIRST DERIVATIVE

