THE PRODUCT AND QUOTIENT RULES

Keeper 23
Honors Calculus

PRODUCT RULE

$$
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

$$
* \frac{d}{d x}(1 s t \cdot 2 n d)=1 s t \cdot 2 n d^{\prime}+2 n d \cdot 1 s t^{\prime}
$$

FIND THE DERIVATIVE

$$
\text { 1. } \begin{aligned}
& f(x)=\left(2 x^{2}-1\right)\left(x^{3}+3\right)+3 \\
& f^{\prime}(x)=1 \text { st } 2 n x^{\prime}+2 \text { and } \\
& f^{\prime}(x)=\left(2 x^{2}-1\right)\left(3 x^{2}\right)+\left(x^{\frac{3}{3}+3}+4 x\right. \\
& f^{\prime}(x)=6 x^{4}-3 x^{2}+4 x^{4}+12 x \\
& f^{\prime}(x)=10 x^{4}-3 x^{2}+12 x
\end{aligned}
$$

FIND THE DERIVATIVE
2. $h(x)=x^{4}(\sqrt{x}+1)$

$$
\frac{d}{d x}+3 t^{\prime}=3 x^{\prime}
$$

$$
\begin{aligned}
& h^{\prime}(x)=x^{3}\left(\frac{1}{2 x^{1 / 2}}\right)+\left(\frac{\left(x^{1 / 2}\right.}{\sqrt{x}+1}+1\right)^{1}\left(3 x^{2}\right) \\
& h^{\prime}(x)=\frac{1 x^{3}}{2 x^{1 / 2}}+3 x^{5 / 2}+3 x^{2} \\
& h^{\prime}(x)=\frac{1}{2} x^{5 / 2}+3 x^{5 / 2}+3 x^{2}\left(h^{\prime}(x)=\frac{7}{2} x^{5 / 2}+3 x^{2}\right.
\end{aligned}
$$

QUOTIENT RULE

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

$$
\text { Think } \frac{d}{d x}\left[\frac{h i}{l o}\right]=\frac{\text { lodehi }- \text { hidelo }}{[l o]^{2}}
$$

FIND THE DERIVATIVE

$$
\begin{aligned}
& \text { 1. } f(x)=\frac{x^{2}-3 x}{x-1} \\
& f^{\prime}(x)=\frac{(x-1)(2 x-3)-\left(x^{2}-3 x\right)(1)}{(x-1)^{2}} \\
& f^{\prime}(x)=\frac{2 x^{2}-5 x+3-x^{2}+3 x}{(x-1)^{2}} \quad f^{\prime}(x)=\frac{x^{2}-2 x+3}{(x-1)^{2}}
\end{aligned}
$$

FIND THE DERIVATIVE

$$
\text { 2. } f(x)=(1-3 x)\left(x^{2}+2\right)^{-1}
$$

Rewrite $f(x)=\frac{1-3 x}{x^{2}+2}{ }_{10}^{n i}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+2\right)(-3) \pm(-2 x)(1-3 x)(2 x)}{\left(x^{2}+2\right)^{2}} o^{o}-\left(2 x-6 x^{2}\right) \\
& f^{\prime}(x)=\frac{-3 x^{2}-6-2 x+6 x^{2}}{\left(x^{2}+2\right)^{2}}\left(f^{\prime}(x)=\frac{3 x^{2}-2 x-6}{\left(x^{2}+2\right)^{2}}\right.
\end{aligned}
$$

