## Exponentials and Logarithms <br> Honors Calculus <br> Keeper 1.8

| Properties of Exponents | Let $\boldsymbol{a}$ and $\boldsymbol{b}$ be real \#'s and let <br> $\boldsymbol{m}$ and $\boldsymbol{n}$ be integers. |
| :---: | :---: |
| Product of Powers | $a^{m} \cdot a^{n}=a^{m+n}$ |
| Power of a Power | $\left(a^{m}\right)^{n}=a^{m n}$ |
| Power of a Product | $(a b)^{m}=a^{m} b^{m}$ |
| Negative Exponent | $a^{-m}=\frac{1}{a^{m}}, a \neq 0$ |
| Zero Exponent | $a^{0}=1, a \neq 0$ |
| Quotient of Powers | $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$ |

## Example 1: Simplify the expression completely.



$$
3 x^{4} \cdot 6 x^{\frac{1}{8}}
$$

$$
\begin{aligned}
& 18 x^{4+\frac{1}{8}} \\
& 18 x^{33 / 8}
\end{aligned}
$$

$$
\begin{aligned}
& 8 \cdot \frac{4}{8 \cdot 1}+\frac{1}{8} \\
& \frac{32}{8}+\frac{1}{8}
\end{aligned}
$$

Example 2: Simplify the expression completely.

$$
\begin{aligned}
& \left(16 x^{5}-1\right)^{\frac{1}{2}} \quad b^{\frac{a x}{6 x+}}=\cos \sqrt{b} b^{x+x} \\
& \left(16 x^{5} y^{-1}\right)^{\frac{1}{2}} \\
& 16^{1 / 2} x^{5 / 2} y^{-1 / 2} \\
& \frac{\sqrt{16} x^{5 / 2}}{y^{1 / 2}}=\frac{4 x^{5 / 2}}{y^{1 / 2}}
\end{aligned}
$$

Example 3: Simplify the expression completely.

$$
\frac{4 z^{\frac{5}{3}}}{2 \sqrt[3]{z^{2}}=\frac{4 z^{5 / 3}}{2 z^{2 / 3}}=2 z^{5 / 3-2 / 3}}
$$

Example 4: Simplify the expression completely.


Example 5: Simplify the expression completely.

$$
\frac{x y^{9}}{3 y^{-2}} \cdot \frac{-7 y}{21 x^{5}}
$$

## Properties of Log \& Exponentials

$-\log _{e} x=\ln x$
$\ln e=1 \quad \log _{e} e=x$
$e^{x}=e$
刺 $\ln 1=0$
$\Rightarrow \ln e^{b}=b$

- $y=e^{x} \& y=\ln x$ are inverses
- $\ln a^{c}=c \ln a$
$-\ln (a b)=\ln a+\ln b$
$-\ln \frac{a}{b}=\ln a-\ln b$

$$
e^{-x}=\frac{1}{e^{x}}
$$

$\Leftrightarrow e^{\ln x}=x$

- $a^{x+y}=a^{x} \cdot a^{y}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$

Writing Exponential Equations in Logarithmic Form
Exponential Equation Logarithmic Equation

$$
\begin{gathered}
\text { exp }=\# \\
\text { bose }^{\#}=\exp \\
\log _{\text {base }}
\end{gathered}
$$



Rewrite into logarithmic form.

1. $5^{\text {exp }}=125^{\#}$
2. $e^{2}=7.39$

$$
\log _{5} 125=3
$$

$$
\begin{aligned}
& \text { 2. } e^{2}=7.39 \\
& \log _{e} 7.39=2 \\
& \ln 7.39=2
\end{aligned}
$$

Rewrite into exponential form.
3. $\log _{6} \frac{1}{36}=-2$

$$
6^{-2}=\frac{1}{36}+3=\frac{\ln 20.08}{e^{2}}=20.08
$$

Evaluate without using a calculator

$$
\begin{aligned}
& \begin{array}{c}
\log _{8} 8=? \\
8=8
\end{array} \quad \text { 1. } \log _{8} 8^{5}=5 \cdot \log _{8} 8=5 \cdot 1=5 \\
& 8^{?}=8^{5} \quad \text { 2. } \frac{3}{4} \ln e=\frac{3}{4} \cdot 1=3 / 4 \\
& \text { 3. } 6 \log 1000 \\
& \begin{array}{ll}
6 \cdot 10^{?}=1000 \\
\text { understood } 10 \\
\text { end } & 6 \cdot 3=18
\end{array} \\
& \text { 4. } 2\left(\log _{7} \frac{1}{49}\right)=2 \cdot\left(7^{x}=\frac{1}{49}\right) \\
& 2-2=-4
\end{aligned}
$$

Find the value without a calculator

1. $5(\ln e)+2 \ln \left(\frac{1}{e}\right)$

$$
\begin{aligned}
& 5 \cdot 1+2 \ln \left(e^{\prime}\right)=5+2(-1) \\
& \text { 2. } \frac{e^{-\ln e}-e^{\ln \sqrt{e}}}{e^{\ln e}}-e^{\ln \left(e^{1 / 2}\right)}=\frac{1}{e}-e^{1 / 2} \text { or } \frac{1}{e}-\sqrt{e}
\end{aligned}
$$

3. $3 \ln \left(e^{2}\left(\ln (e) \ln { }^{\prime} e\right)\right)$

$$
\begin{aligned}
& \ln \left(e^{2}(\ln (e) \ln \cdot e)\right) \\
& 3 \ln \left(e^{2}\right)=3.2 \ln e 6
\end{aligned}
$$

## Remember your Logarithm Properties!!!!

The Product Rule: $\log _{a} M N=\log _{a} M+\log _{a} N$

ThePower Rule: $\log _{a} M^{p}=p \cdot \log _{a} M$

The Quotient Rule: $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$

Express as a single logarithm (condense)

1. $2 \ln x-4 \ln y-\ln 13$
(pos) Adding $\rightarrow$ numerator
(neg) Gubbtraeting $\rightarrow$ denominator
2. $\log _{3} 7+\frac{1}{2} \log _{3} x-5 \log _{3} y$

$$
\log _{3}\left(\frac{7 x^{1 / 2}}{y^{5}}\right) \text { or } \log _{3} \frac{7 \sqrt{x}}{y^{5}}
$$

Expand the following Logarithms
7. $\log \frac{x^{2} y^{3}}{w z^{3}}=$ $=\log x^{2}+\log y^{3}-\log \omega-\log z^{3}$ $2 \log x+3 \log y-\log w-3 \log z$
8. $\log \frac{b^{3}}{\sqrt{a c}}=\log \frac{b^{3}}{a^{1 / c^{1 / 2}}}=\log b^{3}-\log a^{1 / 2}-\log c^{1 / 2}$
$\underset{\substack{\text { rex } \\ \text { as rate } \\ \text { asp } \\ \text { exp }}}{ }$

$$
3 \log b-\frac{1}{2} \log a-\frac{1}{2} \log c
$$

