RATES OF CHANGE WRITING LINEAR EQUATIONS

Honors Calculus
Keeper 1.2

hVERAGE RATE OP CHANGE

The average rate of change between any two points on the graph of f is the slope of the line through those points.

The average rate of change on the interval $\left[x_{1}, x_{2}\right]$ is

$$
m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

FIND AVERAGE RATE OF CHANGE

1. Find the average rate of change of $f(x)=-x^{3}+3 x$ on

$$
\begin{aligned}
& \text { each interval: } \\
& \text { a. }[-2,-1] \quad f(-2)=-(-2)^{3}+3(-2)=2 \\
& (-2,2)\left(-x_{2}\right) \quad f(-1)=-(-1)^{3}+3(-1)=-2 \\
& \left.x_{1} f(x)\right) \\
& x_{2} f y_{22} \\
& \text { b. }[0,1] \quad m_{[-2,-1}=\frac{-2-2)}{-1-(-2)}=\frac{-4}{1}=-4 \\
& f(0)=0 \\
& f(1)=2 \\
& f
\end{aligned} m=\frac{20}{1-0}=2 \frac{0-2}{0-1}=2
$$

2. Find the average rate if change on the interval $[-6,2]$.

$$
\begin{aligned}
& f(x)=\frac{x+5}{x-4} \quad-\frac{35}{10}-\frac{1}{10}=-\frac{36}{10} \\
& f(-6)=\frac{-6+5}{-6-4}=\frac{-1}{-10} \\
& \begin{array}{l}
f(-6)=\frac{1}{10}\left(\begin{array}{cc}
-6, & \frac{1}{10} \\
x_{1} & y_{1}
\end{array}\right) \\
f(2)=\frac{7}{-2}\left(\begin{array}{cc}
2, & -\frac{7}{2} \\
x_{2} & y_{2}
\end{array}\right.
\end{array} \\
& m=\frac{\left(-\frac{7.5}{2.5}-\frac{1}{10}\right)}{(2-1.6)}=\frac{-\frac{18}{5}}{8} \\
& -\frac{18}{5} \cdot \frac{1}{8 / 4}=\frac{-9}{20}
\end{aligned}
$$

3. Find the average rate if change on the interval $[-4,4]$.

$$
\begin{aligned}
f(-4) & =2 \quad f(x)=\sqrt{x+8} \\
f(4) & =\sqrt{12} \quad m_{[-4,4]}=\frac{2 \sqrt{3}}{8} \\
& =2 \sqrt{3}\left(\frac{\sqrt{3}-1}{4} \quad \frac{\not 2(\sqrt{3}-1)}{48}\right.
\end{aligned}
$$

1.3 WRITING AN EQUATION OF A LINE p. 4

Slope-Intercept Form: Given the slope m and the y intercept b,

$$
y=m x+b
$$

***Point-Slope Form: Given the slope m and a point $\left(x_{1}, y_{1}\right)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Standard Form: $\quad \mathbf{A x}+\mathbf{B y}=\mathbf{C}$

1. Write the point-slope form of the equation of the line that passes through $(2,3)$ and has a slope of $-\frac{1}{2}$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-\frac{1}{2}(x-2)
\end{aligned}
$$

PARALLEL AND PERPENDICULAR LINES

Parallel lines have the SAME slope.

Perpendicular lines have an OPPOSITE, RECIPROCAL slope.
2. Write the point-slope equation of the line that passes through $(3,2)$ and is perpendicular to the line $y=-3 x+2$.

$$
\begin{aligned}
& m=1 \frac{3}{1} \\
& \operatorname{Lm}=\frac{1}{3} \quad y-2=\frac{1}{3}(x-3) \\
& (3,2) \\
& x_{1}, y_{1}
\end{aligned} \quad
$$

3. Write the equation of the line that passes through $(3,2)$ and is parallel to the line $y=-3 x+2$. Then convert to slope-intercept form.
Pt-Slopeform: $y-2=-3(x-3)$

$$
y-2=-3 x+9
$$

Slope-Int:

$$
y=-3 x+11
$$

