Honors Calculus Prerequisite Packet

Welcome to Honors Calculus! This is a semester-long course intended to prepare you for AP Calculus or Calculus I in college. There are certain math skills that you have learned in your previous courses that are necessary to be successful in this class. Some notes are provided, but you should also use other resources on the Internet to help familiarize yourself with these topics. Show all work \& highlight your answers! You can do all of your work on separate paper, but be sure to attach it to this packet.

FUNCTIONS

To evaluate a function for a given value, simply plug the value into the function for \mathbf{x}.
Recall: $(f \circ g)(x)=f(g(x))$ OR $f[g(x)]$ read " f of g of \boldsymbol{x} " Means to plug the inside function (in this case $\mathrm{g}(\mathrm{x})$) in for x in the outside function (in this case, $\mathrm{f}(\mathrm{x})$).

Example: Given $f(x)=2 x^{2}+1$ and $g(x)=x-4$ find $f(g(x))$.

$$
\begin{aligned}
f(g(x)) & =f(x-4) \\
& =2(x-4)^{2}+1 \\
& =2\left(x^{2}-8 x+16\right)+1 \\
& =2 x^{2}-16 x+32+1 \\
f(g(x)) & =2 x^{2}-16 x+33
\end{aligned}
$$

Let $f(x)=2 x+1$ and $g(x)=2 x^{2}-1$. Find each of the following:

1. $f(2)=$ \qquad
2. $g(-3)=$ \qquad
3. $g(x+1)=$ \qquad
4. $g(f(x))=$
\qquad

Let $f(x)=\sin (2 x)$. Find the exact value of each of the following: (Hint-fill out your unit circle on p. 3 first.)

5. $f\left(\frac{\pi}{4}\right)=$

\qquad 6. $f\left(\frac{2 \pi}{3}\right)=$ \qquad

INTERCEPTS OF A GRAPH

$$
\begin{aligned}
& \text { To find the } \mathrm{x} \text {-intercepts, let } \mathrm{y}=0 \text { in your equation and solve. } \\
& \text { To find the } \mathrm{y} \text {-intercepts, let } \mathrm{x}=0 \text { in your equation and solve. }
\end{aligned}
$$

Example: Given the function $y=x^{2}-2 x-3$, find all intercepts.

$$
\begin{array}{l|l}
x-\text { int. }(\text { Let } y=0) & \frac{y \text {-int. }(\text { Let } x=0)}{y=0^{2}-2(0)-3} \\
\hline 0=x^{2}-2 x-3 & y=-3 \\
0=(x-3)(x+1) & y \text {-intercept }(0,-3) \\
x=-1 \text { or } x=3 &
\end{array}
$$

Find the x - and y-intercepts for the following:
7. $y=2 x-5$
8. $y=x^{2}+x-2$
9. $y=\sqrt{x\left(16-x^{2}\right)}$

POINTS OF INTERSECTION

Find the points of intersection on the graph using the elimination or substitution method:
10. $\begin{array}{r}x+y=8 \\ 4 x-y=7\end{array}$
11. $x=3-y^{2}$
$y=x-1$

DOMAIN AND RANGE

Find the domain and range of each function. Write your answer in INTERVAL notation.
12. $f(x)=x^{2}-5$
13. $f(x)=-\sqrt{x+3}$
14. $f(x)=\frac{2}{x-1}$

EQUATION OF A LINE

15. Determine the equation of a line passing through the point $(5,-3)$ with an undefined slope.
16. Determine the equation of a line passing through the point $(-4,2)$ with a slope of 0 .
17. Use point-slope form to write the equation of the line with a slope of $\frac{2}{3}$ that goes through the point $(2,5)$.

UNIT CIRCLE

You can determine the sine or the cosine of any standard angle on the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle. Recall tangent is defined as \sin / \cos or the slope of the line.

Examples:
$\sin \frac{\pi}{2}=1 \quad \cos \frac{\pi}{2}=0 \quad \tan \frac{\pi}{2}=u n d$
*You must have these memorized OR know how to calculate their values without the use of a calculator.
18. $\sin \pi$
19. $\cos \frac{3 \pi}{2}$
20. $\sin \left(-\frac{\pi}{2}\right)$
21. $\tan \frac{3 \pi}{4}$
22. $\cos \frac{10 \pi}{3}$
23. $\sec \frac{\pi}{6}$
24. $\csc \frac{7 \pi}{6}$
25. $\boldsymbol{\operatorname { t a n }} \frac{\pi}{3}$
26. $\cot 0$

TRANSFORMATION OF FUNCTIONS

$h(x)=f(x)+c$		Vertical shift c units up	$h(x)=f(x-c)$
$h(x)=f(x)-c$	Vertical shift c units down		Horizontal shift c units right
$h(x)=-f(x)$		Reflection over the x-axis	

27. Given $f(x)=x^{2}$ and $g(x)=(x-3)^{2}+1$. How does $g(x)$ differ from $f(x)$?
28. Write an equation for the function that has the shape of $f(x)=x^{3}$ but shifted 6 units to the left and reflected over the x-axis.

VERTICAL ASYMPTOTES

Determine the vertical asymptotes for the function. Set the denominator equal to zero to find the x -value for which the function is undefined. That will be the vertical asymptote given the numerator does not equal 0 also (Remember this is called removable discontinuity).
Write a vertical asymptotes as a line in the form $\mathrm{x}=$

Example: Find the vertical asymptote of $y=\frac{1}{x-2}$ Since when $x=2$ the function is in the form $1 / 0$ then the vertical line $x=2$ is a vertical asymptote of the function.

HORIZONTAL ASYMPTOTES

Determine the horizontal asymptotes using the three cases below.
Case I. Degree of the numerator is less than the degree of the denominator. The asymptote is $\mathrm{y}=0$.
Example: $y=\frac{1}{x-1}$ (As x becomes very large or very negative the value of this function will approach 0). Thus there is a horizontal asymptote at $y=0$.

Case II. Degree of the numerator is the same as the degree of the denominator. The asymptote is the ratio of the lead coefficients.
Exmaple: $y=\frac{2 x^{2}+x-1}{3 x^{2}+4}$ (As x becomes very large or very negative the value of this function will approach $2 / 3$). Thus there is a horizontal asymptote at $y=\frac{2}{3}$.

Case III. Degree of the numerator is greater than the degree of the denominator. There is no horizontal asymptote. The function increases without bound. (If the degree of the numerator is exactly 1 more than the degree of the denominator, then there exists a slant asymptote, which is determined by long division.)
Example: $y=\frac{2 x^{2}+x-1}{3 x-3}$ (As x becomes very large the value of the function will continue to increase and as x becomes very negative the value of the function will also become more negative).

State the vertical and horizontal asymptotes for each of the following:

29. $f(x)=\frac{1}{3 x-2}$
30. $f(x)=\frac{4 x^{2}}{x^{2}-4}$
31. $f(x)=\frac{2+x}{x^{2}(1-x)}$
32. $f(x)=\frac{x^{3}+x-1}{x^{2}-3 x-4}$

PROPERTIES OF EXPONENTS

Rule		Example
1	$x^{1}=x$	$5^{1}=5$
2	$x^{0}=1$	$5^{0}=1$
3	$x^{-1}=\frac{1}{x^{1}}$	$5-1=\frac{1}{5}$
4	$\left(x^{m}\right)\left(x^{n}\right)=x^{m+n}$	$\left(x^{2}\right)\left(x^{3}\right)=x^{2+3}=x^{5}$
5	$\frac{x^{m}}{x^{n}}=x^{m-n}$	$\frac{x^{3}}{x^{2}}=x^{3-2}=x^{1}$
6	$\left(x^{m}\right)^{n}=x^{(m)(n)}$	$\left(x^{3}\right)^{2}=x^{(3)(2)}=x^{6}$
7	$(x y)^{n}=x^{n} y^{n}$	$(x y)^{3}=x^{3} y^{3}$
8	$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$	$\left(\frac{x}{y}\right)^{3}=\frac{x^{3}}{y^{3}}$
9	$x^{-n}=\frac{1}{x^{n}}$	$x^{-2}=\frac{1}{x^{2}}$

Simplify:

33. $-2 x^{4} \bullet 4 x^{3}$
34. $\left(2^{2} x^{4} y^{5} z\right)^{3}$
35. $\left(3 x^{2} x^{-2}\right)\left(\left((-2)^{3} z^{2}\right)^{2} z^{5}\right)^{0}$
36. $\frac{-6 x^{4} y^{-3}}{9 x^{3} x y^{7}}$
37. $\frac{\left(3 x^{2} y\right)^{5}}{9 x^{10} y^{6}}$

EXPONENTIAL FUNCTIONS

$$
\begin{aligned}
& \text { Example: Solve for } \mathrm{x} \\
& 4^{x+1}=\left(\frac{1}{2}\right)^{3 x-2} \\
& \left(2^{2}\right)^{x+1}=\left(2^{-1}\right)^{3 x-2} \\
& \begin{array}{ll}
2^{2 x+2}=2^{-3 x+2} & \text { Get a common base } \\
2 x+2=-3 x+2 & \text { Simplify } \\
x=0 & \text { Set exponents equal } \\
x & \text { Solve for } \mathrm{x}
\end{array}
\end{aligned}
$$

Solve:

38. $3^{3 x+5}=9^{2 x+1}$
39. $\left(\frac{1}{6}\right)^{x}=216$

LOGARITHMS

The statement $y=b^{x}$ can be written as $x=\log _{b} y$. They mean the same thing.
REMEMBER: A LOGARITHM IS AN EXPONENT
Recall $\ln x=\log _{e} x$
The value of e is $2.718281828 \ldots$ or $\lim \left(1+\frac{1}{x}\right)^{x} \quad$ Evaluate the following:
40. $\log _{7} 7$
41. $\log _{8} 1$

Example: Evaluate the following logarithms
$\log _{2} 8=$?
In exponential for this is $2^{7}=8$
Therefore ? $=3$
Thus $\log _{2} 8=3$
42. In e
43. $\log _{16} 4$

PROPERTIES OF LOGARITHMS

$$
\log _{b} x y=\log _{b} x+\log _{b} y \quad \log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \quad \log _{b} x^{y}=y \log _{b} x \quad b^{\log _{b} x}=x
$$

Examples:

Expand $\log _{4} 16 x$	Condense $\ln y-2 \ln R$	Expand $\log _{2} 7 x^{5}$
$\log _{4} 16+\log _{4} x$	$\ln y-\ln R^{2}$	$\log _{2} 7+\log _{2} x^{5}$
$2+\log _{4} x$	$\ln \frac{y}{R^{2}}$	$\log _{2} 7+5 \log _{2} x$

Use the properties of logarithms to evaluate the following:
44. $\log _{2} 2^{5}$
45. $\ln e^{3}$
46. $e^{\ln 3}$
47. $2^{\log _{2} 3}$

RADICALS \& RATIONAL EXPONENTS

$$
\begin{aligned}
& \text { Product Property of Square Roots } \\
& \sqrt{a b}=\sqrt{a} \bullet \sqrt{b} \\
& \text { Examples } \\
& \sqrt{4 \bullet 9}=\sqrt{36}=6 \text { or } \sqrt{4 \bullet 9}=\sqrt{4} \bullet \sqrt{9}=2 \bullet 3=6
\end{aligned}
$$

Simplify Square Roots

Simplify: $\sqrt{80}=\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 5} \quad \sqrt{80}=\sqrt{16 \bullet 5}$

$$
\begin{array}{ll}
=\sqrt{2^{2}} \cdot \sqrt{2^{2}} \cdot \sqrt{5} & =\sqrt{16} \cdot \sqrt{5} \\
=2 \cdot 2 \cdot \sqrt{5} & =4 \sqrt{5} \\
=4 \sqrt{5} &
\end{array}
$$

When using rational exponents, remember that the numerator is the power and the denominator is the root.

$$
\sqrt[n]{x}^{m}=x^{\frac{m}{n}} \text { For example, } 27^{\frac{2}{3}}=\sqrt[3]{27}^{2}=(3)^{2}=9
$$

Simplify. Write answer as a simplified radical.
48. $\sqrt{80}$
49. $\sqrt[3]{54 x^{2} y^{8}}$
50. $25^{\frac{3}{2}}$
51. $\frac{\sqrt{5}}{\sqrt{15}}$
52. $8^{-\frac{1}{2}}$

DIVIDING FRACTIONS WITH A MONOMIAL DENOMINATOR

Divide each term in the numerator by the monomial in the denominator.
For example, $\frac{x^{3}+3 x^{2}-2 x+5}{x}=\frac{x^{3}}{x}+\frac{3 x^{2}}{x}-\frac{2 x}{x}+\frac{5}{x}=x^{2}+3 x-2+\frac{5}{x}$
53. $\frac{5 x^{6}-3 x^{4}-4 x^{2}+3}{x^{2}}$
54. $\frac{x^{3}-2 x^{2}+4 x+5}{\sqrt{x}}$ 1st change the radical to a rational exponent

FACTORING

54. $x^{2}-4$
55. $x^{2}+7 x+12$
56. $3 x^{2}+10 x+3$
57. $x^{4}-7 x^{2}+12$
58. $100 a^{2}-36 b^{2}$
59. $a^{3}-8$
60. $3 x^{3}+12 x^{2}-2 x-8$
61. $-5 x^{2} y+10 x y^{3}$
