Final Exam Review - Meaning of Derivatives and Derivative Rules

1. What is the difference between average rate of change on $[a, b]$ and instantaneous rate of change at $x=a$?

Use the limit definition of a derivative to evaluate.
2.
$\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h}$
3. $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}$
4. Approximate the derivative using a graph: Figure 5 shows the graph of an object's position $s=s(t)$ on an $s-$ axis as a function of the time t. What is the object's approximate velocity in the positive s-direction at
a. $t=3$
b. $t=2$
c. $\quad t=6$

FIGURE 5
5. Suppose that the amount of water in gallons in a holding tank at t minutes is given by $V(t)=2 t^{2}-16 t+35$. Determine each of the following by finding the derivative of $V(t)$
a. Find the average rate of change on $[1,5]$
b. Find the rate of change in the volume of water in the tank at $t=1$ minute
c. Find the rate of change in the volume of water in the tank at $t=5$ minutes
d. Is the volume of water in the tank ever not changing? If so, when?
6. Use the graph shown to describe where and why $h(x)$ is not differentiable.

7. $f(x)=4 x^{2}-3 x+2$. Find the equation of the tangent line and normal line to the curve at the point where $x=$ -2 .
8. The line tangent to the graph of $y=f(x)$ at $x=3$ passes through the points $(-1,5)$ and $(3,-1)$. Find $f(3)$ and $f^{\prime}(3)$
9. Suppose $g(x)=3 x+1$ is the equation of the tangent line to the graph of $y=f(x)$ at $a=2$. What is $f(2)$ and $f^{\prime}(2)$
10. Use the graph at the right to complete the table.

Condition	Domain Interval/Value
$f^{\prime}(x)<0$	
$f^{\prime}(x)=0$	
$f^{\prime}(x)>0$	
$f^{\prime \prime}(x)<0$	
$f^{\prime \prime}(x)=0$	
$f^{\prime \prime}(x)>0$	

At what point is f speeding up? Slowing down?

11. Given $f(x)=x^{3}-3 x^{2}-9 x+6$, find the following:
a. Where is $f(x)$ increasing? Decreasing?
b. Where does $f(x)$ have a local max? Local min?
c. Where is $f(x)$ concave up? Concave down?
12. Find where the following functions have horizontal tangents:
a. $f(x)=3 x^{2}-15$
b. $f(x)=\sin (2 x)-x$
c. $f(x)=12 x^{2}-3 x^{3}$
d. $f(x)=\frac{3}{4} x^{4}-\frac{3}{2} x^{2}$
13. Evaluate the derivative using derivative rules
a. $f(x)=\left(3 x^{2}-4\right)(5 x+3)$
b. $y=\frac{6 x^{2}}{\sin x}$
c. $f(x)=e^{2 x} \sin (3 x)$
d. $f(x)=e^{\cot x}$
e. $y=e^{x^{2}-3 x}$
f. $y=\sqrt[3]{x^{7}}+\frac{1}{\sqrt[5]{x^{2}}}-\frac{2}{x}$
g. $g(x)=5 x^{4} \ln \left(2 x^{3}+6\right)$
i. $y=\cos ^{6}(3 x-2)$
j. $\quad y=\ln \left(5 x^{2}-3 x\right)+7 \tan \left(x^{3}\right)-\frac{8}{x}$
14. Find the derivative using the chart.
a. Find $\frac{d}{d x}\left[\frac{g(x)}{f(x)}\right]$ when $x=-2$
b. $\frac{d}{d x}\left[x^{2}-f(\sqrt{x})\right]$ when $x=4$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-4	6	3	5	6
-2	3	-3	7	1
0	2	2	4	-2
1	-2	-5	-1	3
2	4	1	12	-3
4	5	-4	2	-4

c. Find $\frac{d}{d x}\left[g^{-1}(x)\right]$ when $x=3$
15. f and g are functions whose graphs are given below. Find the following:
a. $\quad p(x)=f(x) \cdot g(x)$, find $p^{\prime}(5)$
b. $\quad m(x)=\frac{x^{2}}{f(x)}$, find $m^{\prime}(-2)$
c. $\quad h(x)=3 g(f(x))$, find $h^{\prime}(2)$

16. If $f(x)=\frac{4}{(1-x)^{2}}$, find the linearization for $f(x)$ at 0 . Use the linearization of $f(x)$ to approximate the value of $f(0.07)$.
17. The equation of motion of a particle is: $s(t)=t^{3}-15 t^{2}+48 t+10$, where s is in meters and t is in seconds. Find the following when $0<t<9$. Be sure to include units where appropriate.
a. Find the velocity function in terms of t
b. When is the particle at rest?
c. When is the particle moving forward?
d. What is the acceleration function in terms of t ?
e. When is the particle slowing down?
f. What is the displacement from $t=0$ to $t=9$?
g. What is the total displacement traveled from $t=0$ to $t=9$

