Final Exam Review - Derivative Applications

1. Given the graph of $f^{\prime}(x)$, find the following intervals or x values where: (estimate to the nearest $\frac{1}{4}$ unit)

a. $\quad f(x)$ is increasing. Justify.
c. $\quad f(x)$ is concave down. Justify.
e. $\quad f(x)$ has a point of inflection. Justify.
2. The radius of a circle is increasing at a rate of 3 $\mathrm{cm} / \mathrm{sec}$. How fast is the area of the circle changing when the radius is 5 cm long?
b. $\quad f(x)$ has horizontal tangents. Justify.
d. $f(x)$ has a local minimum. Justify.
3. A road perpendicular to a highway leads to a farmhouse located 1 mile away. An automobile travels past the farmhouse at a speed of 60 mph . How fast is the distance between the automobile and the farmhouse increasing when the automobile is 3 moles past the intersection of the highway and the road?
4. A light is on the top of a 12 ft tall pole and a 5 ft 6 in tall person is walking away from the pole at a rate of $2 \mathrm{ft} / \mathrm{sec}$.
a. At what rate is the tip of the shadow moving away from the pole when the person is 25 ft from the pole?
b. At what rate is the tip of the shadow moving away from the person when the person is 25 ft from the pole?
5. Determine all the numbers c which satisfy the conclusion of the Mean Value Theorem for the following function $f(x)=\frac{1}{4} x^{3}+1$ over the interval [-2,2].
6. Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other is a maximum.
7. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
8. Find the point on the parabola $y=x^{2}+1$ that is closest to the point $(3,1)$
9. Find the absolute maximum and the absolute minimum of the function $f(x)=x^{3}-x^{2}-x+2$ on the interval $[-10,2]$. Justify your answer.
10. We want to build a rectangular per with three parallel partitions using 500 feet of fencing. What dimensions will maximize the total area of the pen?
11. A manufacturer determines that x employees on a certain production line will produce y units per month where $y=75 x^{2}-0.2 x^{4}$. To obtain maximum monthly production, how many employees should be assigned to the production line?
12. Find the dimensions of the rectangle with maximum area that has its base on the x-axis and its other two vertices along the x-axis and lying on the parabola $y=12-x^{2}$.
