Enrichment for Integral Rules Unit

Related to U-Substitution

1. If
$$\int_{9}^{15} f(x)dx = 45$$
, the find $\int_{3}^{5} f(3x)dx$

2. If
$$\int_{0}^{9} f(x)dx = 4$$
, then find $\int_{0}^{3} xf(x^{2})dx$

3.
$$\int_0^{\frac{\pi}{4}} \frac{e^{tanx}}{\cos^2 x} dx$$

4. $\int_{1}^{\infty} \frac{x^2}{(x^3+2)^2} dx$ is an improper integral because its top bound is ∞ . In AP Calculus BC we will learn that we may be able to evaluate the integral by noting: $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$. If this limit exists and is some finite number, we say the improper integral converges. Determine if $\int_{1}^{\infty} \frac{x^2}{(x^3+2)^2} dx$ converges. If it does converge, determine what value it

converges to.

Related to Trapezoidal Approximation (another numeric integration technique)

1. English mathematician Thomas Simpson (1710-1761) developed a rule for approximate integration resulting from using parabolas instead of the straight line segments creating trapezoids for our trapezoidal approximation technique. Simpson's Rule states the following:

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \Big]$$

where n (the number of subintervals) is **even** and $\Delta x = \frac{b-a}{n}$.

Find the approximation for $\int_{4}^{6} \ln(x^3 + 2) dx$ using Simpson's Rule with n = 10. (This problem is calculator active!)

2. A table of values of a function g is given. Use Simpson's Rule to estimate $\int_{0}^{1.6} g(x) dx$.

х	g(x)
0.0	12.1
0.2	11.6
0.4	11.3
0.6	11.1
0.8	11.7
1.0	12.2
1.2	12.6
1.4	13.0
1.6	13.2