Enrichment for Integral Rules Unit

Related to U-Substitution

1. If $\int_{9}^{15} f(x) d x=45$, the find $\int_{3}^{5} f(3 x) d x$.
2. If $\int_{0}^{9} f(x) d x=4$, then find $\int_{0}^{3} x f\left(x^{2}\right) d x$.
3. $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos ^{2} x} d x$
4. $\int_{1}^{\infty} \frac{x^{2}}{\left(x^{3}+2\right)^{2}} d x$ is an improper integral because its top bound is ∞. In AP Calculus BC we will learn that we may be able to evaluate the integral by noting: $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$. If this limit exists and is some finite number, we say the improper integral converges. Determine if $\int_{1}^{\infty} \frac{x^{2}}{\left(x^{3}+2\right)^{2}} d x$ converges. If it does converge, determine what value it converges to.

Related to Trapezoidal Approximation (another numeric integration technique)

1. English mathematician Thomas Simpson (1710-1761) developed a rule for approximate integration resulting from using parabolas instead of the straight line segments creating trapezoids for our trapezoidal approximation technique. Simpson's Rule states the following:
$\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
where n (the number of subintervals) is even and $\Delta \mathrm{x}=\frac{b-a}{n}$.
Find the approximation for $\int_{4}^{6} \ln \left(x^{3}+2\right) d x$ using Simpson's Rule with $\mathrm{n}=10$. (This problem is calculator active!)
2. A table of values of a function g is given. Use Simpson's Rule to estimate $\int_{0}^{1.6} g(x) d x$.

x	$\mathrm{g}(\mathrm{x})$
0.0	12.1
0.2	11.6
0.4	11.3
0.6	11.1
0.8	11.7
1.0	12.2
1.2	12.6
1.4	13.0
1.6	13.2

