AP Calculus Analyzing Graphs in Class Practice Problems

Consider the function $h^{\prime}(x)=2 x-x \sin (2 x)$ on the open interval $-5<x<5$ to answer the following questions.

1. Based on the graph of $h^{\prime}(x)$, how many relative extrema does the graph of $h(x)$ have? Give a reason for your answer.
2. Based on the graph of $h^{\prime}(x)$, how many points of inflection does the graph of $h(x)$ have? Give a reason for your answer.
3. Find the equation of $h^{\prime \prime}(x)$ and then graph it on your calculator. Explain why the graph of $h^{\prime \prime}(x)$ confirms your response to question \#2 above.

Based on these relationships between a function and its first and second derivative, complete the following statements.

1. $f(x)$ is increasing
2. $f(x)$ is decreasing
3. $f(x)$ has a relative maximum or minimum
4. $f(x)$ has a point of inflection
5. $f(x)$ is concave up
6. $f(x)$ is concave down
7. $f(x)$ has a point of inflection
8. $f^{\prime}(x)$ is increasing
9. $f^{\prime}(x)$ is decreasing
10. $f^{\prime}(x)$ has a relative maximum or minimum
11. $f^{\prime}(x)$ has a point of inflection
12. $f^{\prime}(x)$ changes from negative to positive
13. $f^{\prime}(x)$ changes from positive to negative
14. $f^{\prime}(x)$ has a relative maximum or minimum
15. $f^{\prime \prime}(x)$ changes from positive to negative
16. $f^{\prime \prime}(x)$ changes from negative to positive
\square
$\leftrightarrow \quad f^{\prime}(x)$
\qquad

$$
\leftrightarrow \quad f^{\prime}(x)
$$

\qquad

$$
\leftrightarrow \quad f^{\prime \prime}(x)
$$

\qquad
$\leftrightarrow \quad f^{\prime \prime}(x)$
$\leftrightarrow \quad f^{\prime \prime}(x)$
\qquad

$$
\leftrightarrow \quad f^{\prime \prime}(x)
$$

\qquad

$$
\leftrightarrow \quad f^{\prime \prime}(x)
$$

\qquad

$$
\leftrightarrow \quad f^{\prime \prime}(x)
$$

\qquad
$\leftrightarrow \quad f^{\prime \prime}(x)$
$\leftrightarrow \quad f(x)$
$\leftrightarrow \quad f(x)$
$\leftrightarrow \quad f(x)$
$\leftrightarrow \quad f^{\prime}(x)$
\qquad

$$
\leftrightarrow \quad f^{\prime}(x)
$$

\qquad

1. For the function $h(x)=\frac{x^{2}-3 x-4}{x-2}$, determine the open intervals on which the given function is increasing or decreasing and the x-values of any relative extrema. Show your analysis and explain your reasoning.
2. If $F^{\prime}(x)=(x-1)^{2}(x-2)(x-4)$, where is the graph of $F(x)$ increasing, decreasing, and/or reaching a relative maximum or minimum? Show your work and justify your reasoning.
3. If $h(x)$ is a twice differentiable function such that $h(x)<0$ for all values of x, then at what value(s)
does the graph of $g(x)$ have a relative maximum if $g^{\prime}(x)=\left(9-x^{2}\right) \cdot h(x)$?

For exercises $4-5$, identify the intervals where the function, $g(x)$, is concave up and concave down. Also, identify the x - values of any points of inflection. Show your work and justify your reasoning.
4. $g^{\prime}(x)=\sqrt{8 x-x^{2}}$
5. $g(x)=x e^{2 x}$

For exercises 6 and 7, use the Second Derivative Test to find the local extrema for the given function.
Show your analysis and justify your reasoning.

6. $g(x)=3 x-x^{3}+5$	7. $h(x)=x^{3}+3 x^{2}-2$

Calculator Active Questions

The function $f^{\prime}(x)=\cos (\ln x)$ is the first derivative of a twice differentiable function, $f(x)$.
a. On the interval $0<x<10$, find the x-value(s) where $f(x)$ has a relative maximum. Justify your answer.
b. On the interval $0<x<10$, find the x-value(s) where $f(x)$ has a relative minimum. Justify your answer.
c. On the interval $0<x<10$, find the x-value(s) where $f(x)$ has a point of inflection. Justify your answer.

