Additional Review - Applications of Derivatives

1. Let f be a function with a second derivative given by
$f^{\prime \prime}(x)=x^{2}(x-3)(x-6)$. What are the x-coordinates of the points of inflection of the graph of f ?
(A) 0 only
(B) 3 only
(C) 0 and 6 only
(D) 3 and 6 only
(E) 0,3 , and 6

Calculator 2. The derivative of the function f is given by $f^{\prime}(x)=x^{2} \cos \left(x^{2}\right)$. How many points of inflection does the graph of f have on the open interval $(-2,2)$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five

Calculator 4. The function f has first derivative given by $f^{\prime}(x)=\frac{\sqrt{x}}{1+x+x^{3}}$. What is the x-coordiante of the inflection point of the graph of f ?
(A) 1.008
(B) 0.473
(C) 0
(D) -0.278
(E) The graph of f has no inflection point.
6. The function f is given by $f(x)=x^{4}+x^{2}-2$. On which of the following intervals is f increasing?
(A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
(B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(C) $(0, \infty)$
(D) $(-\infty, 0)$
(E) $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$

Calculator 8. The graph of the function $y=$ $x^{3}+6 x^{2}+7 x-2 \cos x$ changes concavity at $x=$
(A) -1.58
(B) -1.63
(C) -1.67
(D) -1.89
(E) $\quad-2.33$

Calculator 9. If the derivative of f is given by $f^{\prime}(x)=e^{x}-3 x^{2}$, at which of the following values of x does f have a relative maximum value?
(A) -0.46
(B) 0.20
(C) 0.91
(D) 0.95
(E) 3.73
11. How many critical points does the function $f(x)=(x+2)^{5}(x-3)^{4}$ have?
(A) One
(B) Two
(C) Three
(D) Five
(E) Nine
10. At what value of x does the graph of $y=$ $\frac{1}{x^{2}}-\frac{1}{x^{3}}$ have a point of inflection?
(A) 0
(B) 1
(C) 2
(D) 3
(E) At no value of x
12. The graph of $y=\frac{-5}{x-2}$ is concave downward for all values of x such that
(A) $x<0$
(B) $x<2$
(C) $x<5$
(D) $x>0$
(E) $\quad x>2$
14. The absolute maximum value of $f(x)=$ $x^{3}-3 x^{2}+12$ on the closed interval $[-2,4]$ occurs at $x=$
(A) 4
(B) 2
(C) 1
(D) 0
(E) $\quad-2$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
15. The function defined by $f(x)=x^{3}-$ $3 x^{2}$ for all real numbers x has a relative maximum at $x=$
(A) -2
(B) 0
(C) 1
(D) 2
(E) 4

Calculator 17. The graph of $y=5 x^{4}-x^{5}$ has a point of inflection at
(A) $(0,0)$ only
(B) $(3,162)$ only
(C) $(4,256)$ only
(D) $(0,0)$ and $(3,162)$
(E) $(0,0)$ and $(4,256)$
16. If $f(x)=\frac{\ln x}{x}$, for all $x>0$, which of the following is true?
(A) f is increasing for all x greater than 0 .
(B) f is increasing for all x greater than 1 .
(C) f is decreasing for all x between 0 and 1 .
(D) f is decreasing for all x between 1 and e.
(E) f is decreasing for all x greater than e.
18. At $x=0$, which of the following is true of the function f defined by $f(x)=x^{2}+$ $e^{-2 x}$?
(A) f is increasing.
(B) f is decreasing.
(C) f is discontinuous.
(D) f has a relative minimum.
(E) f has a relative maximum.

1. Suppose $y=e^{\sin x}$ on the interval $\left[0, \frac{5 \pi}{4}\right]$. Identify all absolute maximum and minimum values. Show all work that leads to your answer and give exact answers, not decimal approximations. (Calculator)
2. A gardener wants to build a wall around a $150 f t^{2}$ plot of land. One of the sides is to be a stone wall that will cost $\$ 50$ per foot, and the other three sides are to be made of wood that will cost $\$ 10$ per foot. What is the minimum cost of the fence (to the nearest whole-number dollar amount)? (Calculator)
3. A coffee filter has the shape of an inverted circular cone with equal base radius and height. Water drains out of the filter at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the height of the water changing when the height of the water is 8 cm ? (Calculator)
4. Find the dimensions of the rectangle with largest area that can be inscribed in the region bounded by the curve $y=\sqrt{6-x}$ in the first quadrant.
5. Find the point on the parabola $y=\sqrt{x}$ that is closest to the point $(3,0)$.
6. A spherical balloon is inflate with gas at the rate of 500 cubic centimeters per minute. How fast is the radius of the balloon increasing at the instant the radius is (a.) 30 centimeters. (b.) 60 centimeters.
7. A rectangular area is to be enclosed with 320 ft of fence. What dimensions of the rectangle give the maximum area?
8. A circular oil slick is being formed in such a way that the radius of the slick is increasing at a constant rate of $12 \mathrm{ft} / \mathrm{hr}$. What will be the rate of area increase when the slick has radius 300 ft ?
9. A girl is flying a kite. The kite is moving horizontally at a height of 120 ft when 250 ft of string is out and the rate of increase in string length is $2 \mathrm{ft} / \mathrm{s}$. How fast is the kite moving in the horizontal direction for these conditions?
10. A rectangular pen will be built using 100 feet of fencing. What dimensions will maximize the area?
11. Approximate using linearization: $\ln (1.02)$

13. Approximate using linearization: $(1.89)^{3}$	14. Approximate using linearization: $\sqrt[3]{7.999} 9$	
$15 . \quad$ Approximate using linearization: $\cos \left(89^{\circ}\right)$		

Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.
17. $f(x)=5-12 x+3 x^{2},[1,3] \quad$ 18. $f(x)=x^{3}-x^{2}-6 x+2,[0,3]$

19. $f(x)=\sqrt{x}-\frac{1}{3} x,[0,9]$	20. $f(x)=\cos (2 x),\left[\frac{\pi}{8}, \frac{7 \pi}{8}\right]$

Verify that the function satisfies the three hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

17. $f(x)=2 x^{2}-3 x+1,[0,2]$	$18 . \quad f(x)=x^{3}-3 x+2,[-2,2]$
$19 . f(x)=\ln (x),[1,4]$	$20 . f(x)=\frac{1}{x},[1,3]$

