Volume = V
=
$$\pi \int_{a}^{b} [R(x)]^{2} dx$$

$$Volume = V$$
$$= \pi \int_{c}^{d} [R(y)]^{2} dy$$

1. Find the volume of the solid formed by revolving the region bounded by the graph of $f(x) = 2\sqrt{x}$, y = 0 & x = 9 about the x - axis.

2. Determine the volume of the solid by rotating the region bounded by $y = \sqrt{x}$ and y = 3, about the y - axis.

3. Determine the volume of the solid by rotating the region bounded by $y = x^2 - 4x + 5$, x = 1, x = 4, and the x - axis about the x - axis.

Use the washer method for solids of revolution with holes.

1. Determine the volume of the solid by rotating the portion of the region bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$ that lies in the first quadrant about the y - axis.

2. Find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$ and $y = x^2$ about the x-axis.