Unit 7

Integration Applications

- Notes and some practice are included
- Homework will be assigned on a daily basis

Topics Covered:
Average Function Value \& Mean Value
Theorem
Area Between 2 Curves
Volume by Known Cross Sections
Volumes of Revolutions - Disk \& Washer Method

Quiz is
Test is
Name:

Average Function Value/Mean Value Theorem

For each problem, find the average value of the function over the given interval.

1. $f(x)=-x^{2}-2 x+5 ;[-4,0]$
2. $f(x)=-x^{4}+2 x^{2}+4 ;[-2,1]$
3. $f(x)=4-x^{2} ;[-2,2]$
4. $f(x)=\frac{x^{2}+5}{x} ;[1,2]$
5. $f(x)=\sin x ;[0, \pi]$
6. $f(x)=\cos x ;\left[0, \frac{\pi}{2}\right]$

For each problem, find the values of c that satisfy the Mean Value Theorem for Integrals.
7. $f(x)=-x+2 ;[-2,2]$
8. $f(x)=\frac{4}{x^{2}} ;[-4,-2]$
9. $f(x)=4 \sqrt{x} ;[0,4]$
10. $f(x)=-3(2 x-6)^{\frac{1}{2}} ;[3,5]$

Area Between Curves Introduction Worksheet

Draw the arbitrary rectangle and set up the integral to find the area for the shaded region.
1.

2.

3.

4.

5.

6.

8.

Area between Two Curves

Compute the area of the shaded region.
1.

2.

3.

Compute the area of the region enclosed by the given curves.
4. $y=4 x, y=6 x^{2}$
5. $y=2 x^{2}, y=x^{2}+2$
6. $x=4-y^{2}, x=y^{2}-4$
7. $y=x^{4}, y=|x|$

Area between Curves 2

Find the area of the shaded region analytically.
1.

2.

3.

4.

5.

7. Find the area of the region(s) enclosed by the graphs of $x-y^{2}=0$ and $x+2 y^{2}=3$

8. Find the area of the region(s) enclosed by the graphs of $y=x^{2}$ and $y=-x$ from $x=$ 0 to $x=3$

Volumes with Cross Sections

1. The base of a solid is bounded by $y=2-x$, the x-axis, and the y-axis. Cross sections that are perpendicular to the x-axis are isosceles right triangles with the right angle on the x-axis. (Legs perpendicular to the x-axis). Find the volume.
2. The base of a solid is bounded by the semi-circle $y=\sqrt{4-x^{2}}$ \& the x-axis. Cross sections that are perpendicular to the x-axis are squares. Find the volume.
3. The base of a solid is bounded by $y=\sqrt{16-x^{2}}$, the positive x-axis $\&$ the positive y-axis. Cross sections that are perpendicular to the y-axis are isosceles right triangles. Find the volume.
4. The base of a solid is a circular region in the xy-plane bounded by the graph $x^{2}+y^{2}=9$. Find the volume of the solid if every cross section by a plane normal to the x-axis is a semi-circle.
5. The base of a solid is circular region in the xy-plane bounded by the graph of $x^{2}+y^{2}=9$. Find the volume of the solid if every cross section by a plane normal to the x-axis is a square with one side as the base.
6. The base of a solid is bounded by $y=2-\frac{1}{2} x$, the x-axis, and the y-axis. Cross sections that are perpendicular to the y-axis are semi-circles. Find the volume.

Find the Volumes of Revolution: Disk Method

1. $y=\sqrt{x}, x=1, x=4, y=0$ about the x axis
2. $y=4-x^{2}, y=0, x=0$, (in the $1^{\text {st }}$ quadrant) about the x-axis
3. $y=\sqrt{4-x^{2}}, y=0, x=0$, (in the $1^{\text {st }}$ quadrant) about the x-axis
4. $y=x^{\frac{2}{3}}, y=1, x=0$, about the y-axis
5. $y=-x+1, y=0, x=0$ about the x-axis
6. $y=x^{2}, x=0, y=4$, (in the $1^{\text {st }}$ quadrant) about the y -axis
7. $x=4 y-y^{2}, y=1, x=0$, about the y axis
8. $y=5 x-x^{2}, y=0$, about the x-axis

Find the Volumes of Revolution: Washer Method

1. $f(x)=2 \sqrt{x}$ and $g(x)=x^{2}$ about the $x-$ axis
2. $y=x^{2}+1, y=1, x=1, x=0$ about the y-axis
3. $f(x)=2 \sqrt{x}$ and $g(x)=x^{2}$ about the y axis
$4 y=\frac{1}{x}, y=2$, and $x=2$ about the y-axis
4. $y=x^{2}$ and $y=2 x$, about the y-axis
5. $y=2 x+2$ and $y=x^{2}+2$ about the $x-$ axis

Unit 7 Integration Applications Review

Find the average value of the function over the interval:

1. $f(x)=\frac{1}{\sqrt{x-1}}[5,10]$
2. $f(x)=x^{3}[0,2]$

Find the value of \mathbf{c} guaranteed by the Mean Value Theorem:
3. $f(x)=-2 x+1[0,4]$
4. $f(x)=\frac{2}{x^{2}}[2,4]$

Determine the area of the bounded region:
5. $y=\frac{1}{x^{2}}, y=0, x=1, x=5$
6. $x=y^{2}-2 y, x=3$
7. $y=x, y=x^{3}$
8. $x=y^{2}+1, x=y+3$
9. $y=\sin x, y=\cos x, \frac{\pi}{4} \leq x \leq \frac{5 \pi}{4}$
10. $y=x^{2}+1, y=-x+7, x=0$
11. $y=5 x-x^{2}, y=x$
12. $x=y^{2}-4 y, x=2 y-y^{2}$

Find the volume by cross sections:

13. The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. If cross sections are built up perpendicular to the x-axis, find the volume of the solid created if the cross sections are:
a) squares
b) isosceles right triangles set on the hypotenuse
c) What if cross sections are perpendicular to the y-axis and are semi-circles?
14. The base of a solid is the region between $y=4-x^{2}, x=0, y=0$. If cross sections are perpendicular to the y-axis and are semicircles, find the volume.
15. Find the volume of the region generated by $y=\sqrt{25-x^{2}}$ and the x-axis. The cross sections are perpendicular to the x-axis:
a. Squares
b. Isosceles triangles
c. Semi Circles
16. Find the volume of the region generated by $y=\frac{1}{\sqrt{x}}, x=0, x=4, y=1 \& y=$ 3. The cross sections are perpendicular to the y-axis:
a. Squares
b. Isosceles triangles
c. Semi Circles
17. Find the volume of the region generated by $y=-\frac{x^{2}}{9}+4$ and $y=0$. The cross sections are perpendicular to the x-axis. The cross sections are rectangles with a height twice the base.

Find the volume of the revolution.
Draw the graph, draw the arbitrary cross section, set up the integral, \& find the volume.
18. $y=-\sqrt{x}+3, y=0, x=0$ and $x=2$
a. about the x axis.

b. about the y-axis:
19. $y=x^{2}, x=0, y=4$
a. about the x-axis.

b. about the y-axis.

Find the volume of the solid generated by revolving the plane region bounded by the indicated equations:
20. $y=x, y=0, x=4$
a. x -axis

b. y-axis
21. $y=\sqrt{x}, y=2, x=0$
a. x-axis
b. y-axis
22. $y=\frac{1}{x^{4}+1}, y=0, x=0, x=1$ about the x-axis

