Algebra 2 Unit 5: Logarithms and Exponential Expressions

I CAN:

- Rewrite expressions from exponential to logarithmic form, and vice versa •
- Evaluate logarithms
- Apply properties of logarithms to expand or condense expressions
- Solve equations involving logarithmic expressions •
- Solve equations involving exponential expressions
- Apply logarithms to real-world scenarios and solve application problems

SHOWERS ...

		0/	0		D	
	/	/		\Diamond		
		$\overline{\mathbb{N}}$	$\langle 0 \rangle$			\sim
	S	~				\leq
	\checkmark	M		M.	\square) '
	0	j)×				à
2	E	3/1			S S S S S S S S S S S S S S S S S S S	3
ER	9	PZ		TO A	P	
4	L	VÀ				1
F						$ \rightarrow $

BRING

FLOWERS

Monday	Tuesday	Wednesday	Thursday	Friday
26 DAY 1	27 DAY 2	28	29 DAY 3	30 DAY 4
Intro to Logarithms	Properties of Logarithms	Help Sessions	Solving Log Equations	More Solving Log Equations
	Logs Quiz		Logs Quiz Due 8 am	
3 DAV 5	4 DAY 6	5	6 DAY I	7 DAY 8
Solving Exponential Equations	More Practice with Logarithmic and Exponential Equations	Help Sessions	Applications of Logarithms	More Applications of Logs
10 DAY 9	11 DAY 10	12		
Review	Unit 5 Test	Help Sessions		

THIS PLAN IS SUBJECT TO CHANGE. PLEASE REFER TO CTLS DIGITAL CLASSROOM FOR UPDATES.

c.
$$4^{\frac{1}{2}} = 2$$

Special Logarithms

A logarithm with **base 10** is called a ______ logarithm and can be written without a base. When no base is shown, it is understood base ____.

ex: $\log 1000 = 3$ because $10^3 = 1000$

A logarithm with **base** *e* is called a ______ logarithm and can be written using the notation _____. You may choose to write it with base ___.

- e represents Euler's number, an irrational constant, similar to π
 - the decimal approximation of e is 2.718

Ex 3: Evaluate each logarithm without using a calculator.

*THINK IT THROUGH: "2 to what power gives me 4?"

*WORK IT OUT: **Rewrite in exponential form** with *x* as the exponent.

a. log ₂ 4	b. log ₃ 81	C. log 100	d. log ₈ 8
e. log ₇ 1	f. $\log_2 \frac{1}{2}$	g. log ₉ 3	h. log ₈ 2
i. log _{<i>x</i>} <i>x</i>	j. log ₆₄ 2	k. log ₅ 5 ³	l. log. 001
m. ln <i>e</i> ⁴	n. $\log_{\frac{1}{3}}3$	0. log 10	p. log ₅ 125

You Try:

- 1. Rewrite in exponential form: $\log_4 1024 = 5$
- 2. Write a true logarithmic equation (not shown above) using a base of 2.
- 3. Fill in the blank to make the equation true.
 - a. $\log_{625} = 4$
 - b. $\log_3 9 = _$
 - C. $\log_6 = 2$
 - d. $\log_{---} = -1$ *this is a common log

Algebra 2	Name	ID: 1
Intro to Logarithms HW	Date	Period
Rewrite each equation in exponential form.		
1) $\log_3 81 = 4$	2) $\log_{13} 169 = 2$	
3) $\log_8 8 = 1$	4) log $\frac{1}{2} - \frac{1}{2}$	
	$7^{10}_{49} 7^{-2}_{7} 2$	
5) $\log_{18} 324 = 2$	6) $\log_4 64 = 3$	
7) $\log_{17} 289 = 2$	8) $\log_{16} 256 = 2$	
9) $\log_7 \frac{1}{12} = -2$	10) $\log_{169} \frac{1}{12} = -\frac{1}{2}$	
· 49	13 2	

Rewrite each equation in logarithmic form.

11)
$$18^2 = 324$$
 12) $18^{-2} = \frac{1}{324}$

13)
$$20^{-2} = \frac{1}{400}$$
 14) $5^3 = 125$

© 2021 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

15)
$$19^{-1} = \frac{1}{19}$$
 16) $5^4 = 625$

17)
$$14^2 = 196$$
 18) $4^{-3} = \frac{1}{64}$

19)
$$15^2 = 225$$
 20) $3^3 = 27$

Evaluate each expression.

21) log₂ 64 22) log₄ 64

23)
$$\log_4 16$$
 24) $\log_5 \frac{1}{25}$

25)
$$\log_2 32$$
 26) $\log_7 \frac{1}{343}$

27)
$$\log_3 243$$
 28) $\log_7 1$

29) log₅ 25 30) log₂ 16

© 2021 Kuta Software LLC. All rights reserved 2-Made with Infinite Algebra 2.

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples			
	Condense into a single logarithm. Simplify if possible.			
Product Property $\log_b(m \cdot n) =$	1. log ₂ 7 + log ₂ 4	2. log 25 + log 4	3. $\log_4 2x + \log_4 4x^2$	
	Expand using the product	property.		
	4. log 6	5. log ₇ 45	6 . $\log_{2}(5r)$	
Occupite set	Condense into a single lo	garithm. Simplify if possible	9.	
Quotient Property $\log_b\left(\frac{m}{n}\right) =$	7. log ₃ 24 – log ₃ 8	8. log ₂ 15 – log ₂ 15	9. $\log_4 x^9 - \log_4 x^2$	
	Expand using the quotient property.			
	10. log ₈ 4	11. $\log_5 \frac{1}{3}$	12. $\log\left(\frac{m}{7}\right)$	
_	Condense into a single lo	garithm. Simplify if possible	9.	
Power Property $\log_b m^n =$	13. 5.log ₄ 2	14. 7 · log ₂ x	15. $\frac{1}{3} \cdot \log 8$	
	Expand using the power property. Simplify if possible.			
	16. log ₂ 8 ⁷	17. 3.log 4 ^{x-1}	18. log ₇ √w	

	Putting it All Together!			
	Directions: Rewrite as a single logarithm. Simpl	ify if possible.		
S	19. 2 · log 6 – log 9	20. $4 \cdot \log_4 a + 2 \cdot \log_4 b$		
SOI SUIS	21. $7 \cdot \log_4 u - 3 \cdot \log_4 v^2$	22. log ₂ 15 + log ₂ 4 – log ₂ 6		
CONDEN:	23. $\log_3 4 + \log_3 y + \frac{1}{2} \cdot \log_3 49$	24. $\frac{1}{3}(\log_5 8 + \log_5 27) - \log_5 3$		
	25. 3 · log ₂ 4 – log ₂ 32	26. $2 \cdot \log 6 - \frac{1}{4} \cdot \log 16 + \log 3$		
	Directions: Expand each logarithm.			
LOGS	27. $\log_6(xyz^4)$	28. $\log_4\left(\frac{a^9}{b}\right)$		
ANDING	29. $\log_7 (q^4 r^2)^2$	30. $\log_2\left(\frac{y}{z^5}\right)^2$		
EXP	31. $\log \sqrt{7x^3}$	32. $\log_3 \sqrt[4]{m^5 n^2}$		

Algebra 2	Name	ID: 1
Properties of Logarithms	All rights reserved. Date	Period
Expand each logarithm.		
1) $\log_9 (x^6 \cdot y)^5$	2) $\log_9\left(c^6\sqrt[3]{a}\right)$	
3) $\log_4\left(x \cdot y \cdot z^3\right)$	4) $\log_5(3^2\sqrt[3]{10})$	
5) $\log_9(11^6\sqrt{2})$	6) $\log_5 (uv^2)^4$	
7) $\log_6(x^3y^6)$	8) $\log_8 \frac{5^3}{7^6}$	
9) $\log_9(x \cdot y \cdot z^3)$	10) $\log_4 \left(\frac{7}{10^3}\right)^6$	
11) $\log_4 \left(11^4 \sqrt[3]{3} \right)$	12) $\log_9 \left(\frac{3}{2^5}\right)^5$	
13) $\log_5 (u^6 \cdot v)^5$	14) $\log_3 \left(\frac{8}{7^5}\right)^3$	

15) $\log_6 \sqrt[3]{u \cdot v \cdot w}$ 16) $\log_3 (5 \cdot 6^2)^3$

© 2021 Kuta Software LLC. All rights reserved -1-Made with Infinite Algebra 2.

Condense each expression to a single logarithm.

17)
$$6 \log_6 a + 2 \log_6 b$$

18) $\frac{\log_5 7}{2} + \frac{\log_5 10}{2} + \frac{\log_5 3}{2}$

19)
$$12 \log_3 x + 4 \log_3 y$$
 20) $4 \log_7 a + 24 \log_7 b$

21)
$$5\log_5 7 + \frac{\log_5 12}{3}$$
 22) $4\log_3 z + \frac{\log_3 x}{2}$

23)
$$15 \log_5 8 + 5 \log_5 7$$

24) $\log_8 11 + \frac{\log_8 7}{2} + \frac{\log_8 12}{2}$

25)
$$\log_5 x + \log_5 y + 5\log_5 z$$

26) $\frac{\log_6 7}{2} + \frac{\log_6 8}{2} + \frac{\log_6 3}{2}$

27) $\log_6 x + \log_6 y + 4\log_6 z$ 28) $3\log_7 10 - 18\log_7 11$

29) $\log_7 5 + \log_7 8 + 6\log_7 3$ 30) $\ln a + \ln b + 4\ln c$

31) $3\log_4 12 + 15\log_4 5$ 32) $4\log_4 w + \frac{\log_4 u}{2}$

© 2021 Kuta Software LLC. All rights reserved 2-Made with Infinite Algebra 2.

Solving Logarithmic Equations

*Recall that in $\log_b a = x$, both *a* and *b* must be positive numbers, and $b \neq 1$.

If a solution to a log equation causes a negative base or argument, it is **extraneous**!

LOG = LOG Each term in the equation is a logarithmic expression.	LOG = NUMBER The equation has both logarithmic expressions and constants.
One-to-One Property: If $\log_b m = \log_b n$, then=	BOB it! Rewrite in exponential form B, O, B!
Step 1: Condense each side into a single log Step 2: Set the arguments equal Step 3: Solve Step 4: Check for extraneous solutions.	Step 1: Condense and isolate the log Step 2: BOB it! Step 3: Solve Step 4: Check for extraneous solutions.
a. $\log_5(5x+9) = \log_5(6x)$	b. $\log_2(x-4) = 6$
$C. \log_9(6 - 3w) = \log_9(-2w)$	$G_{1} \log_{4}(4x + 8) - 7 = -5$

$\left[\begin{array}{c} c & \log \left(2n - 5 \right) \\ - \log \left(6 - \log 2 \right) \\ \end{array} \right]$	$f_2 = \log(x + 0) + \log x$
$e_{10}(2p-5) = 10g_{3} - 10g_{3} 2$	$1.2 = 10g_6(x + 9) + 10g_6 x$
$q. \log(v + 5) + \log 4 = \log 72$	h. $log(2x) + log(x - 5) = 2$
i. $2 \log x = \log(18 - 7x)$	j. $2 \log x = 2 + \log 4$

Algebra 2	Name	
© 2021 Kuta Software LLC. All rights r Solving Log Equations Practice	eserved. Date	Block
Solve each equation.		
1) $\log_4 (5a+4) = \log_4 (3a+8)$	2) $\log_{15} (5a+8) = \log_{15} -3a$	

3)
$$\log_6 (4-k) = \log_6 (k+3)$$

4) $\log_{19} 5k = \log_{19} (3k+10)$

5)
$$\log_6 k = 4$$
 6) $\log_2 n = 0$

7)
$$\log_8 (x+2) = -2$$

8) $\log_8 -6x = 1$

10) $5\log_8(m-6) = -5$ 9) $\log_5 -9r + 5 = 9$

11) $4\log_9(-9v-5) = 12$ 12) $\log_{12} (8n + 10) - 9 = -7$

© 2021 Kuta Software LLC. All rights reservelt. Made with Infinite Algebra 2.

13)
$$3 + \log_3(-10n + 8) = 1$$

14) $-9\log_{12}(9k - 2) = -36$

15)
$$-2\log_2(-2n-4) - 6 = -8$$

16) $1 + 5\log_{12}(9 - 3p) = 16$

17)
$$\log_8 4 + \log_8 (x-9) = 2$$

18) $\log_9 (x-5) - \log_9 x = 2$

19)
$$\log_6 2x^2 + \log_6 8 = 4$$

20) $\ln(x+5) - \ln x = 1$

21)
$$\log_4 (-5x - 8) - \log_4 3 = 3$$

22) $\log_8 (4x^2 - 4) - \log_8 5 = 2$

23) $\log_9 6 - \log_9 (4x - 2) = 1$ 24) $\ln(5x+5) - \ln 8 = 3$

25) $\ln 3 + \ln (3x^2 + 5) = \ln 15$ 26) $\log(x-3) - \log(x-5) = 1$

 \mathbb{C} 2021 Kuta Software LLC. All rights reserve2-. Made with Infinite Algebra 2.

Solving Exponential Equations

Any logarithm can be rewritten or evaluated using the **Change of Base Formula**: $\log_b a = \frac{\log a}{\log}$

ex: log₃ 7

Strategy I:	Strategy 2:
Make the bases match	The bases cannot match
Property of Equality of Exponential Functions	BOB it!
If $b^x = b^y$, then =	Rewrite in logarithmic form:
	B, O, B!)
Step 1: Rewrite each exponential expression	Step 1: Isolate the exponential expression
as a power with a common base .	Step 2: BOB it!
Step 2: Set the exponents equal	Step 3: Solve
Step 3: Solve	Step 4 Check
Step 4: Check	
$q, 2^{x+1} = 2^9$	b. $7^x = 20$
$c 6^{2x-10} - 36$	$d^{2^{x+1}} - 18$
	0.5 - 10

-4m+11 1	
$ e. 7^{4x+11} = \frac{1}{2}$	$1.4^{3w} - 5 = 3$
$a 16^{3x} - 0^{x+2}$	b 7 $4^{x+1} - 10$
$9.10^{\circ} - 0^{\circ}$	$11.7 - 4^{\circ} - 10$
i. $9^{a+2} = 27^{4a-2}$	$1 \cdot 5 \cdot 9^{x-1} + 1 = 181$

Algebra 2

Name

© 2021 Kuta Software LLC. All rights reserved		
Solving Exponential Equations Practice	Date	Block
Solve each equation.		

Solve each equation.

1)
$$6^{-3p-1} = 6^{-p}$$
 2) $4^{-x} = 4^{x+2}$

3)
$$8^{-r-3} = 1$$

4) $\left(\frac{1}{6}\right)^{v+2} = 36$

5)
$$36^{2-2n} = 216^{2n+1}$$
 6) $6^{-2p} = 6^{-2p}$

7)
$$5^{2-2n} = 125$$
 8) $6^{-3m+1} \cdot 6^{3m} = 6^2$

9)
$$16 \cdot 4^{-3a} = 4$$

10) $\frac{4^3}{64^{2b}} = 4^2$

11)
$$\left(\frac{1}{6}\right)^{2k+3} \cdot 36^{3k} = 36$$
 12) $\frac{1}{81} \cdot 81^{-k} = \frac{1}{3}$

© 2021 Kuta Software LLC. All rights reserved!- Made with Infinite Algebra 2.

13)
$$15^a = 8$$
 14) $6^n = 79$

15)
$$3^{n-3} = 56$$
 16) $8^{x+6} = 32$

17)
$$13^{2x} = 56$$
 18) $-4 \cdot 10^{x+2} = -3$

19)
$$5 \cdot 10^{a+3} = 65$$
 20) $20^{r+3} - 3 = 46$

21)
$$e^{-2b-5} - 9 = 74$$
 22) $-6^{10b-3} = 0$

23)
$$10^{5p+7} - 2 = 34$$
 24) $2 \cdot 4^{2n-2} = 8$

25)
$$-7e^{6-7a} + 7 = -68$$
 26) $7 \cdot 12^{6x-9} - 2 = 56$

27) $-7 \cdot 10^{4n+8} - 8 = -8$

© 2021 Kuta Software LLC. All rights reserve21-. Made with Infinite Algebra 2.

Name:	I	Unit 7: Exponential & Logarithmic Function	ons
Date:	Bell: I	Homework 8: Logarithmic & Exponentia	Equations
	** This is a 2-pa	ge document! **	
Directions: Solve each equat	ion Check all answ	vers for extraneous solutions	
1. $\log_4 (25 - 2x) = \log_4 (6x + 1)$		2. $\log_9(8y - 9) = \log_9 108 - \log_9 4$	
3 6 log 2 – log 8 \pm log (g 2)		4 . $\log_2(5w \pm 14) = 2 \log_2 w$	
$G_1 = 0 + \log_2 2 = \log_2 0 + \log_2 (a - 2)$		-10096(3w + 11) = 20096w	
5. $\log_7(3x+5) = 2$		6. $\log_{27}(11-2k) = \frac{1}{3}$	
7. $\log(24x + 64) = 3$		8. $5 = \log_3 8 + \log_3 (r+6)$	
	1		

$9.5^{x-4} = 25^{x-6}$	$\int \frac{1}{1-v} (1)^{11-v}$
	$ 10. 36^{3v+2} = \frac{1}{6} $
	(6)
11 Γ^m 220	13 14^{p-8} 63
$11 \cdot 5 = 220$	$\mathbf{L}\mathbf{Z}_{\mathbf{I}} 14^{T} = 0\mathbf{Z}$
13. $3 \cdot 4^{n+2} = 78$	14. $5^{8-2y} - 10 = 45$
15 $2.10^{6c} \pm 9 = 17$	16 9.14 ^{5a+9} + 8 - 107
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. 2 · 10 ⁶ + 9 = 17	16. 9 · 14 ^{5a+9} + 8 = 107
15. 2 · 10 ⁶ + 9 = 17	16. 9 ⋅ 14 ^{5a+9} + 8 = 107
15. 2 · 10 ⁶ + 9 = 17	16. 9 ⋅ 14 ^{5a+9} + 8 = 107
15. 2 · 10 ⁶ + 9 = 17	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. 9 ⋅ 14 ^{5a+9} + 8 = 107
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. $2 \cdot 10^{6c} + 9 = 17$	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. 2 · 10 ⁶ + 9 = 17	16. $9 \cdot 14^{5a+9} + 8 = 107$
15. 2 · 10 ⁶ + 9 = 17	16. 9 · 14 ^{5a+9} + 8 = 107
15. $2 \cdot 10^{6c} + 9 = 17$	16. 9 · 14 ^{5a + 9} + 8 = 107

Name:	Date:
Торіс:	Class:

Main Ideas/Questions	Notes/Examples		
Fxponential	Occurs when a quantity exponentially increases over time.		
Growth	Formula:	a = r =	
		<i>t</i> =	
Examples	 The original value of an investment is \$1,800. If the value has increased by 7% each year, write an exponential function to model the situation. Then, find the value of the investment after 15 years. 		
	2. In 2002, there were 972 students enr then, the number of students has incr exponential function to model the situ enrolled in 2014.	olled at Oakview High School. Since reased by 1.5% each year. Write an lation, then find the number of students	
Funanantial	Occurs when a quantity expo	nentially decreases over time.	
Decay	Formula:	a = r = t =	
Examples	3. An investment of \$12,000 is losing va exponential function to model the situ investment after 9 years.	lue at a rate of 4% each year. Write an ation, then find the value of the	
	4. Mark bought a brand new car for \$35 value approximately 8% each year, w situation. Then, find the value of the	,000 in 2008. If the car depreciates in rite an exponential function to model the car in 2015.	
	19	© Gina Wilson (All Things Algebra), 2015	

Compound	Occurs when interest is calculated on both the principal amount AND the accrued interest thus far.
Interest	Formula: P =
	r =
	<i>n</i> =
	$t = _$
Examples	money will she have in 5 years if the interest is compounded quarterly?
	6. Jack took out a 6-year loan for \$25,000 to purchase a boat at a 4.5% interest rate. If the interest is compounded monthly, what wil he have paid total over the course of the loan?
	7. An investment account pays 3.9% interest compounded semi-annually. If \$4,000 is invested in this account, what will be the balance after 12 years?
	8. A savings account offers 0.8% interest compounded bimonthly. If Bob deposited \$300 into this account, how much interest will he earn after 10 years?
	9. Suppose you invest \$750 into an account that pays 3% interest compounded weekly. How much interest will you have earned after 20 years?

Name:		Unit 7: Exponential & Logarithmic Functions	
Date:	Bell:	Homework 10: Applications of Exponential Funct	ions
	** This is a 2	2-page document! **	
Exponential Growth & De	сау		
 Vanessa invested \$2,500 i exponential function to mo 	nto an account f odel this situatio	that will increase in value by 3.5% each year. Write an on, then find the value of the investment after 20 years.	
2. The average price of a mo approximately 3.1% each the price of a ticket in 201	vie ticket in 199 year. Write an 6.	00 was \$4.22. Since then, the price has increased by exponential function to model this situation, then find	
3. A virus has infected 400 p Write an exponential funct infected in 10 days.	eople in the tow ion to model th	in and is spreading to 25% more people each day. is situation, then find the number of people that will be	
4. The population of a small at a rate of 2.5% each year population of the town in a	town was 10,80 ar. Write an exp 2020.	0 in 2002. Since then, the population has decreased conential function to model the situation, then find the	
5. Manny bought a brand new write an exponential funct	w car in 2012 fo ion to model the	or \$28,750. If the car depreciates by 12% each year, e situation, then find the value of the car in 2018.	

Applications of Logarithms

In 1956, scientists B. Gutenberg and C. F. Richter developed a formula to estimate the amount of energy released in an earthquake. *E* represents the amount of energy, in ergs, released from an earthquake. The **magnitude** of an earthquake is given by the formula:

$$M = \frac{\log E - 11.4}{1.5}$$

where *E* is ergs, the energy released from an earthquake.

Richter Scale

- 1 only detectable by seismograph
- 2 hanging lamps sway
- 3 can be felt
- 4 glass breaks, buildings shiver
- 5 furniture falls
- 6 wooden houses damaged
- 7 buildings fall
- 8 catastrophic damage

Analyze:

- a. The base of the logarithm in the formula is _____.
- b. Because it is a _____ logarithm, an earthquake with a rating of 7 is how much stronger than one with a rating of 4?
- c. How much stronger is an earthquake with a rating of 8 than one with a rating of 2?

Ex 1: On April 13, 1985, the energy released by the earthquake in Indonesia was 3.981 x 19²¹ ergs. What did it measure on the Richter Scale?

Ex 2: On September 19, 1985, the energy released by the earthquake in Mexico was 1.259 x 10²³ ergs. What did it measure on the Richter Scale?

Ex 3: How much more powerful was the earthquake in Mexico than the one in Indonesia?

Ex 4: The relationship between a telescope's limiting magnitude (the apparent magnitude of the dimmest star that can be seen with the telescope) and the diameter of the telescope's objective lens or mirror can be modeled by

$$M = 5 \log D + 2$$

where M is the limiting magnitude and D is the diameter (in millimeters) of the lens mirror. If a telescope can reveal stars with a magnitude of 12, what is the diameter of its objective lens?

Ex 5: An altimeter is an instrument that finds the height above sea level by measuring air pressure. The height and the air pressure are related by the model

$$h = -8005 \ln \frac{P}{101,300}$$

where h is the height (in meters) above sea level and P is the air pressure (in pascals). What is the air pressure when the height is 4000 meters above sea level?

Ex 6: The loudness L of a sound (in decibels) is related to the intensity I of the sound (in watts per square meter) by the equation

$$L = 10 \log \frac{I}{I_0}$$

where I_0 is and intensity of 10^{-1} watt per square meter, corresponding roughly to the faintest sound that can be heard by humans.

- a. What is the intensity of the sound of fans cheering in Arrowhead Stadium if the noise level measures 142.2 decibels?
- b. If the decibel level of the sound of a soft whisper is 30, what is the intensity of the sound?

PROPERTIES OF LOGS

Name	(Rule (s)	Example 1	Example 2
RUGIC		Simplify	Simplify
LOGARITHMS	$\log_b b = \underline{\qquad}: \log_b 1 = \underline{\qquad}$	log ₅ 5	$\log_8 1$
		Expand	Condense
PRODUCT RULE	$\log_b m \cdot n = $	log ₂ 10	$\log_5 6 + \log_5 7$
		Expand	Condense
QUOTIENT RULE	$\log_b\left(\frac{m}{n}\right) = $	$\log\left(\frac{3}{10}\right)$	$\log_4 48 - \log_4 12$
		Expand	Condense
POWER RULE	$\log_b m^n = $	$\log_3 5^2$	$(x - 1) \log_5 7$
CHANGE OF BASE FORMULA	$\log_b a =$	Use a common base to evaluate $\log_7 3$	
(Remember:	Common Logs are base10 and are often Natural Logs are base <i>e</i> and are denoted	n written with no base shown. d using In	

Unit 5 Practice Test

Rewrite each equation in exponential form.

1)
$$\log_9 81 = 2$$

2) $\log_{256} 16 = \frac{1}{2}$

Rewrite each equation in logarithmic form.

3)
$$18^2 = 324$$

4) $125^{\frac{1}{3}} = 5$

Evaluate each expression.

5)
$$\log_{16} 4$$
 6) $\log_3 \frac{1}{27}$

Condense each expression to a single logarithm.

7) $8 \log_6 x - 2 \log_6 y$ 8) $\log_7 a + \log_7 b + 5 \log_7 c$

Expand each logarithm.

9)
$$\log_2(z^2\sqrt{x})$$
 10) $\log_7(\frac{x}{y^4})^5$

Solve each equation.

12) $\log_9 x + \log_9 (x + 24) = 2$ 11) $\log_3(x+5) - \log_3 7 = \log_3 18$

13)
$$625^{-3x} = 25$$
 14) $2^{2v} = 2^{3v-2}$

Solve each equation. Round your answers to the nearest ten-thousandth.

15) $7^{x-10} = 80.9$ 16) $10 \cdot 9^{5.8p+5} - 2 = 48$

& 2021 Kuta Software LLC . All rights reserved . Made with Infinite Algebra 2.

١

The wind speed *s* (in miles per hour) near the center of a tornado can be modeled by $s = 93 \log d + 65$

- where d is the distance (in miles) that the tornado travels.
- A. In April 1947, a tornado traveled over 125 miles, from Texas to Oklahoma. Estimate the wind speed of the tornado.
- B. In May 2011, a tornado stuck Joplin, Missouri, with wind speeds up to 200 miles per hour. Determine the distance that the tornado traveled.

$$A = P \left(1 + \frac{r}{n}\right)^{n/t}$$
In 1998, Jana invested \$1500 in an account with a 4.5% interest rate compounded monthly. What will be her account balance in 2022?
Exponential Growth: $y = a(1 + r)^t$ Exponential Decay: $y = a(1 - r)^t$
A. Jorge purchased an investment property for \$55,000. Its value is expected to increase by 1.7% each year. What will be the value of the property in 10 years?
B. Julie bought a car for \$29,500 in 2019. It depreciates at a rate of 15% per year. What will be the value of the car in 2025?
C. When will the depreciated value of Julie's car be \$9,000?