<u>Unit 3 – Meaning of a Derivative</u>

- Notes and some practice are included
- Homework will be assigned on a daily basis

Topics Covered:

- Derivative at a Point
- Definition of a Derivative
- Tangent & Normal Lines
- Graphing f' from f
- Graphing f'' from f and f'
- Graphing f from f' and f''

Test is _ Name:

Rates of Change and The Derivative

Find an equation for the tangent line and the normal line to the graph of each function at the indicated value.

1. $f(x) = x^2 + 2, x = -1$ 2. $f(x) = x^3 + 1, x = 1$

3.
$$f(x) = \frac{2-5x}{1+x}$$
 at 0
4. $f(x) = \sqrt{x+3}, x = 6$

5.
$$f(x) = \frac{1}{\sqrt{x}}, x = 4$$

6. $f(x) = \frac{1}{x^2}, x = 2$

Find the rate of change of f at the indicated number.

7.
$$f(x) = 5x - 2, c = 0$$

8. $f(x) = x^2 - 1, c = -1$

9.
$$f(x) = \frac{x^2}{x+3}, c = 0$$
 10. $f(x) = \frac{x}{x^2-1}, c = 2$

Find the derivative of each function at the given number.

11.
$$f(x) = 2x + 3$$
 at 1
12. $f(x) = 3x^2 + x + 5$ at -1

Using the Definition of a Derivative

Use the definition of the derivative to find the derivative of each function with respect to x.

1. $y = -5x^2 - 2x + 5$ 2. y = 2x - 1

3.
$$y = -\frac{2}{x+4}$$
 4. $f(x) = 2\sqrt{x+3}$

5.
$$f(x) = \sqrt{2x - 5}$$
 6. $y = x^3$

7.
$$f(x) = (3x - 5)^2$$

8. $f(x) = \frac{1}{3x}$

Curve Sketching - Graphing f' from f

The graph of f is given below. Sketch a possible graph of f' and f''

3

First Derivative Test & Critical Points

Draw a possible graph of f(x) given the information below.

Curve Sketching Review

Given f'(x), sketch the graphs of f(x) and f"(x)

Sketch each graph given the information below

Meaning of a Derivative Unit Review

Find the rate of change of the function at the indicated x-value given.

1. $f(x) = x^2 + 4x + 2$ when x = -12. $f(x) = 2x^2 - 4$ when x = -1

Find the derivative of each function at the given value.

3.
$$f(x) = \frac{1}{x-3}$$
 at 0
4. $f(x) = \sqrt{2x+2}$ at 1

For each problem, find the equation of the tangent line AND <u>normal line</u> to the function at the given value or point. Write your answer in point-slope form.

5.
$$f(x) = \frac{4}{x}$$
 at $(-2, -2)$
6. $f(x) = \sqrt{x+3}$ at $x = 6$

Use the definition of the derivative to find the derivative of each function with respect to x.

7.
$$y = 3x^2 - 2x + 3$$

8. $y = -4x + 1$

9.
$$y = \frac{3}{x-2}$$
 10. $f(x) = 4\sqrt{x-6}$

Given the graph of f(x), sketch a graph of f'(x) and f''(x).

14.

Given f'(x), sketch f(x) and f"(x).

Draw a possible graph of f(x) given the information below.

