Unit 3 - Meaning of a Derivative

- Notes and some practice are included
- Homework will be assigned on a daily basis

Topics Covered:
Derivative at a Point
Definition of a Derivative
Tangent \& Normal Lines
Graphing f^{\prime} from f
Graphing $f^{\prime \prime}$ from f and f^{\prime}
Graphing f from f^{\prime} and $f^{\prime \prime}$

Test is
Name:

Rates of Change and The Derivative

Find an equation for the tangent line and the normal line to the graph of each function at the indicated value.

1. $f(x)=x^{2}+2, x=-1$
2. $f(x)=x^{3}+1, x=1$
3. $f(x)=\frac{2-5 x}{1+x}$ at 0
4. $f(x)=\sqrt{x+3}, x=6$
5. $f(x)=\frac{1}{\sqrt{x}}, x=4$
6. $f(x)=\frac{1}{x^{2}}, x=2$

Find the rate of change of f at the indicated number.
7. $f(x)=5 x-2, c=0$
8. $f(x)=x^{2}-1, c=-1$
9. $f(x)=\frac{x^{2}}{x+3}, c=0$
10. $f(x)=\frac{x}{x^{2}-1}, c=2$

Find the derivative of each function at the given number.
11. $f(x)=2 x+3$ at 1
12. $f(x)=3 x^{2}+x+5$ at -1

Using the Definition of a Derivative

Use the definition of the derivative to find the derivative of each function with respect to x.

1. $y=-5 x^{2}-2 x+5$
2. $y=2 x-1$
3. $y=-\frac{2}{x+4}$
4. $f(x)=2 \sqrt{x+3}$
5. $f(x)=\sqrt{2 x-5}$
6. $y=x^{3}$
7. $f(x)=(3 x-5)^{2}$
8. $f(x)=\frac{1}{3 x}$

Curve Sketching - Graphing \boldsymbol{f}^{\prime} from \boldsymbol{f}

The graph of f is given below. Sketch a possible graph of f^{\prime} and $f^{\prime \prime}$
1.

2.

3.

4.

7.

8.

9.

10.

Curve Sketching - Graphing \boldsymbol{f} from \boldsymbol{f}^{\prime}

The graph of f^{\prime} is given below. Sketch a possible graph of f
1.

3.

7.

9.

8.

2.

4.

10.

Draw a possible graph of $f(x)$ given the information below.

1. a. $f(x)$ is a continuous curve
b. $f^{\prime}(x)<0,(-1,4)$
c. $f^{\prime}(x)>0,(-\infty,-1) \cup(4, \infty)$
d. $f^{\prime}(x)=0$, at $x=-1$ and $x=4$
$f^{\prime}(x) \longleftarrow$
2. a. $f(x)$ is not continuous at $\mathrm{x}=3$
b. $f^{\prime}(x)<0$, when $x>3$
c. $f^{\prime}(x)>0$, when $x<3$

3. a. $f(x)$ is a continuous curve
b. $f^{\prime}(x)>0$, when $x<2$
c. $f^{\prime}(x)<0$, when $x>2$
d. $f^{\prime}(x)$ does not exist at $x=2$

4. a. $f(x)$ is a continuous curve
b. $f^{\prime}(x)<0,(-\infty, 3) \cup(5, \infty)$
c. $f^{\prime}(x)>0,(3,5)$
d. $f^{\prime}(x)=0$, at $x=3$ and $x=5$
$f^{\prime}(x)$

5. $f^{\prime}(x)$

6.

$f^{\prime}(x) \longleftrightarrow$
7.

Curve Sketching Review

Given $f(x)$, sketch the graphs of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$

Given $f^{\prime}(x)$, sketch the graphs of $f(x)$ and $f^{\prime \prime}(x)$

Sketch each graph given the information below

7. a. $f(x)$ is continuous b. $f(0)=1$ and $f(-1)=-2$ c. $f^{\prime}(x)>0$ on $(-3,1)$ d. $f^{\prime}(x)<0$ on $(-\infty,-3) \cup(1,4) \cup(4, \infty)$ e. $f^{\prime \prime}(x)>0$ on $(-\infty,-1) \cup(0,1) \cup(4, \infty)$ f. $f^{\prime \prime}(x)<0$ on $(-1,0) \cup(1,4)$	$f(x)$ $f^{\prime}(x)$ $f^{\prime \prime}(x)$	$f(x)$
8. a. $f(x)$ is not continuous at $x=0$ b. $f^{\prime}(x)$ does not exist at $x=0$ c. $f^{\prime}(x)>0$ when $x<0$ d. $f^{\prime}(x)>0$ when $x>0$ e. $f^{\prime \prime}(x)$ does not exist at $x=0$ f. $f^{\prime \prime}(x)>0$ when $x<0$ g. $f^{\prime \prime}(x)<0$ when $x>0$	$f(x)$ $f^{\prime}(x)$ $f "(x)$	$f(x)$

Meaning of a Derivative Unit Review

Find the rate of change of the function at the indicated x-value given.

1. $f(x)=x^{2}+4 x+2$ when $\mathrm{x}=-1$
2. $f(x)=2 x^{2}-4$ when $x=-1$

Find the derivative of each function at the given value.
3. $f(x)=\frac{1}{x-3}$ at 0
4. $f(x)=\sqrt{2 x+2}$ at 1

For each problem, find the equation of the tangent line AND normal line to the function at the given value or point. Write your answer in point-slope form.
5. $f(x)=\frac{4}{x}$ at $(-2,-2)$
6. $f(x)=\sqrt{x+3}$ at $x=6$

Use the definition of the derivative to find the derivative of each function with respect to \mathbf{x}.
7. $y=3 x^{2}-2 x+3$
9. $y=\frac{3}{x-2}$
8. $y=-4 x+1$
10. $f(x)=4 \sqrt{x-6}$

Given the graph of $f(x)$, sketch a graph of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
11.

12.

13.

15.

Given $f^{\prime}(x)$, sketch $f(x)$ and $f^{\prime \prime}(x)$.
17.

14.

16.

18.

Draw a possible graph of $f(x)$ given the information below.

19. a. $f(x)$ is continuous over $[-3,3]$ b. $f^{\prime}(x)>0$ on $(-3,-2) \cup(-1,3)$ c. $f^{\prime}(x)<0$ on $(-2,1)$ d. $f^{\prime}(x)=0$ at $\mathrm{x}=-2,1$ e. $f^{\prime}(x)$ is undefined at $\mathrm{x}=-1$ f. $f^{\prime \prime}(x)>0$ on $(1,3)$ g. $f^{\prime \prime}(x)<0$ on $(-3,-1) \cup(-1,1)$	$f(x)$ $f^{\prime}(x)$	
20. a. $f(x)$ is a continuous b. $f^{\prime}(x)>0,(-\infty,-1) \cup(1, \infty)$ c. $f^{\prime}(x)<0,(-1,1)$ d. $f^{\prime \prime}(x)>0,(1, \infty)$ e. $f^{\prime \prime}(x)<0,(-\infty,-1)$ f. $f^{\prime}(x)$ doesn't exist at $x=1$	$f(x)$ $f^{\prime}(x)$ $f "(x)$	
21. a. $f(x)$ is not continuous at $\mathrm{x}=1$ b. $f^{\prime}(x)$ does not exist at $\mathrm{x}=1$ c. $f^{\prime}(x)>0$ when $x<1$ d. $f^{\prime}(x)<0$ when $x>1$ e. f " (x) does not exist at $\mathrm{x}=1$ f. $f^{\prime \prime}(x)>0$ when $x<1$ g. $f^{\prime \prime}(x)<0$ when $x>1$	$f(x)$ $f^{\prime}(x)$ $f "(x)$	$f(x)$

