AP Calculus AB - The Meaning of the Derivative

Fall 2020 - Unit 3

Date	Topic	Assignment
Tuesday, September $1^{\text {st }}$	Keeper 3.1 The Average Rate of Change \& the Definition of a Derivative at a Point $E Q$: What is a derivative?	Rates of Change \& the Derivative (Packet p. 1-3)
Wednesday, September $2^{\text {nd }}$	Keeper 3.2 The Definition of the Derivative What is the derivative of a function at a point and how is it related to the tangent line?	The Derivative as a Function; Differentiability (Packet p. 4-6)
Thursday, September $3^{\text {rd }}$	Keeper 3.3 Interpreting the Derivative How can you interpret derivatives in the real world?	Skills Check 3.1 \& 3.2 Interpreting the Derivative (Packet p. 7-8) Review - Using the Definition of the Derivative (Packet p. 9-10)
Friday, September $4^{\text {th }}$	Keeper 3.4 Curve Sketching fof f^{\prime} What does the first derivative and the second derivative tell us about the function?	Virtual Quiz 3.1-3.3 Curve Sketching - Graphing f' from f (Packet p. 11 -12)
Tuesday, September $8^{\text {th }}$	Keeper 3.5 Curve Sketching ffrom \mathbf{f}^{\prime} What does the first derivative and the second derivative tell us about the function?	Skills Check 3.4 Curve Sketching (Packet p. 13-14) Curve Sketching - Graphing f from f' (Packet p. 15 $-16)$
Wednesday, September $9^{\text {th }}$	Review	Practice Test - The Meaning of Derivatives (Packet p. 17-21)
Thursday, September $10^{\text {th }}$	Unit 3 Test	Good Luck!

Rates of Change and The Derivative

Find an equation for the tangent line and the normal line to the graph of each function at the indicated value.

1. $f(x)=x^{2}+2, x=-1$
2. $f(x)=x^{3}+1, x=1$
3. $f(x)=\frac{2-5 x}{1+x}$ at 0
4. $f(x)=\sqrt{x+3}, x=6$
5. $f(x)=\frac{1}{\sqrt{x}}, x=4$
6. $f(x)=\frac{1}{x^{2}}, x=2$

Find the rate of change of f at the indicated number.
7. $f(x)=5 x-2, c=0$
8. $f(x)=x^{2}-1, c=-1$
9. $f(x)=\frac{x^{2}}{x+3}, c=0$
10. $f(x)=\frac{x}{x^{2}-1}, c=2$

Find the derivative of each function at the given number.
11. $f(x)=2 x+3$ at 1
12. $f(x)=3 x^{2}+x+5$ at -1

AP Practice Problems

13. The line $x+y=5$ is tangent to the graph of $y=f(x)$ at the point where $x=2$. What are the values of $f(2)$ and $f^{\prime}(2)$?
14. What is the instantaneous rate of change of the function $f(x)=3 x^{2}+5$ at $x=2$?
15. If $x-3 y=13$ is an equation of the normal line to the graph of f at the point $(2,6)$, then what is the value of $f^{\prime}(2)$?
16. The graph of the function f, given below, consists of three line segments. Find $f^{\prime}(0)$.

17. The function f is defined on the closed interval $[-2,16]$. The graph of the derivative of $f, y=$ $f^{\prime}(x)$, is given below. The point $(6,-2)$ is on the graph of $y=f(x)$. What is the equation of the graph of f at $(6,-2)$?

18. A tank is filled with 80 liters of water at 7 a.m. ($t=0$). Over the next 12 hours the water is continuously used and no water is added to replace it. The table below gives the amount of water $A(t)$ (in liters) remaining in the tank at selected times t, where t measures the number of hours after $7 \mathrm{a} . \mathrm{m}$.

t	0	2	5	7	9	12
$A(t)$	80	71	66	60	54	50

Use the table to approximate $A^{\prime}(5)$.

The Derivative as a Function; Differentiability

Find the derivative of each function at any real number c.

1. $f(x)=10$
2. $f(x)=2 x+3$
3. $f(x)=2-x^{2}$

Differentiate each function f and determine the domain of f^{\prime}.
4. $f(x)=5$
5. $f(x)=3 x^{2}+x+5$
6. $f(x)=5 \sqrt{x-1}$

Differentiate each function f. Graph $y=f(x)$ and $y=f^{\prime}(x)$ on the same set of coordinate axes.
7. $f(x)=\frac{1}{3} x+1$

8. $f(x)=2 x^{2}-5 x$

Find the derivative of each function.
9. $f(x)=m x+b$
10. $f(x)=a x^{2}+b x+c$
11. $f(x)=\frac{1}{x^{2}}$
12. $f(x)=\frac{1}{\sqrt{x}}$

Each limit represents the derivative of a function f at some point c. Determine f and c.
13. $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$
14. $\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)}{x-1}$
17. $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin x-\frac{1}{2}}{x-\frac{\pi}{6}}$
19. $\lim _{h \rightarrow 0} \frac{(3+h)^{2}+2(3+h)-15}{h}$
18. $\lim _{x \rightarrow 0} \frac{2(x+2)^{2}-(x+2)-6}{x}$

For problems 20-24, use the function $f(x)=\frac{x}{x+2}$
20. Find $f^{\prime}(x)$ by finding $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
21. Find the slope of the normal line drawn to the graph of $f(x)$ at $x=-2$
23. Find the equation of the tangent line drawn to the graph of $f(x)$ at $x=6$
24. Find $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, where $a=1$

Interpreting the Derivative

1. Suppose the cost of drilling x feet for an oil well is $C=f(x)$ dollars
a. What are the units of $f^{\prime}(x)$?
b. In practical terms, what does $f^{\prime}(x)$ mean in this case?
c. What can you say about the sign of $f^{\prime}(x)$?
d. Estimate the cost of drilling an additional foot, starting at the depth of 300 ft , given that $f^{\prime}(300)=$ 1000
2. A paint manufacturing company estimates that it can sell $g=f(p)$ gallons of paint at a price of p dollars.
a. What are the units of $\frac{d g}{d p}$
b. In practical terms, what does $\frac{d g}{d p}$ mean in this case?
c. What can you say about the sign of $\frac{d g}{d p}$?
d. Given that $\frac{d g}{d p}=-100$ when $p=20$, what can you say about the effect of increasing the price from $\$ 20$ per gallon to $\$ 21$ per gallon?
3. If $q=f(p)$ gives the number of cords of wood sold when the price per cord is p dollars.
a. What are the units of $f^{\prime}(p)$?
b. In practical terms, what does $f^{\prime}(p)$ mean in this case?
c. What can you say about the sign of $f^{\prime}(p)$?
d. Given that $f^{\prime}(425)=-\frac{2}{5}$, what can you say about the effect of decreasing the price of a cord of wood from \$425 to \$420?
4. If $q=f(p)$ gives the number of pounds of sugar produced when the price per pound is p dollars, then what are the units and the meaning of the statement $f^{\prime}(3)=50$?

The cost of producing x ounces of gold from a new gold mine is $C=f(x)$ dollars. What is the meaning of the derivative $f^{\prime}(x)$? What are the units? What does the statement $f^{\prime}(800)=17$ mean?
5. The number of bacteria after t hours in a controlled laboratory experiment is $n=f(t)$. What is the meaning of $f^{\prime}(5)$? What are its units?
6. Suppose there is an unlimited amount of space and nutrients for the bacteria. Which do you think is larger $f^{\prime}(5)$ or $f^{\prime}(10)$? If the supply of nutrients is limited, would that affect your conclusion?
7. Let $T(t)$ be the temperature (in $^{\circ} \mathrm{F}$) in Phoenix t hours after midnight on September 10, 2008. The table shows the values of this function recorded every two hours. What is the meaning of $\mathrm{T}^{\prime}(8)$? Estimate its value.

t	0	2	4	6	8	10	12	14
T	82	75	74	75	84	90	93	94

Review - Using the Definition of the Derivative

Each limit represents the derivative of some function f at some number a. State such an f and a in each case.

1. $\lim _{h \rightarrow 0} \frac{(1+h)^{10}-1}{h}$
2. $\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h}$
3. $\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5}$
4. $\lim _{x \rightarrow \pi / 4} \frac{\tan x-1}{x-\pi / 4}$
5. $\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}$
6. $\lim _{t \rightarrow 1} \frac{t^{4}+t-2}{t-1}$

Find the derivative of the function using the definition using the definition of derivative. State the domain of the function and the domain of its derivative.
7. $f(x)=a x^{2}+b$
8. $f(x)=x^{2}-2 x^{3}$
9. $G(t)=\frac{1-2 t}{3+t}$
10. $f(x)=x^{\frac{3}{2}}$
11. $g(t)=\frac{1}{\sqrt{t}}$
12. $f(x)=x^{4}$
13. Let $T(t)$ be the average monthly temperature (measured in degrees Fahrenheit) in Atlanta where t is measured in months since January 2000. What is the meaning of each of the following?
a.) $T(4)=72$
b) $T^{\prime}(11)=-8$
c) $T^{\prime}(14)=12$

Curve Sketching - Graphing \boldsymbol{f}^{\prime} from \boldsymbol{f}

The graph of f is given below. Sketch a possible graph of f^{\prime} and $f^{\prime \prime}$
1.

3.

2.

4.

5.

6.

7.

8.

The graphs of f, f^{\prime}, and $f^{\prime \prime}$ are shown on the same set of coordinate axes. Which is which?
9.

10.

Curve Sketching

Draw a possible graph of $\boldsymbol{f}(\boldsymbol{x})$ given the information below.
1.
a. $f(x)$ is continuous
$f(x)$
$f(x)$
b. $f(3)=2$
c. $f^{\prime}(x)>0,(-\infty, 0),(3, \infty)$
d. $f^{\prime}(x)<0,(0,3)$
e. $f^{\prime}(x)=0$ at $\mathrm{x}=0, \mathrm{x}=3$
2. a. $f(x)$ is continuous
b. $f^{\prime}(x)<0,(-\infty, 1)$
c. $f^{\prime}(x)>0,(1, \infty)$
d. $f^{\prime}(x)=$ undef. at $\mathrm{x}=1$
e. $f^{\prime \prime}(x)<0$ at $(-\infty, 1) \cup(1, \infty)$
$f(x)$

$f(x)$

3. a. $f(x)$ is continuous
b. $f^{\prime}(x)<0 ;(-\infty, 2),(2, \infty)$
$f(x)$
c. $f^{\prime}(x)$ is undefined at $x=2$
d. $f^{\prime \prime}(x)<0$ when $x<2$
e. $f^{\prime \prime}(x)>0$ when $x>2$

4. a. $f(x)$ has jump discont. at $x=-2$
$f(x)$
b. $f^{\prime}(x)>0 ;(-\infty,-2), \cup(-2, \infty)$
c. $f^{\prime \prime}(x)<0 ;(-\infty,-2)$
d. $f^{\prime \prime}(x)>0 ;(-2, \infty)$

5.
a. $f(x)$ is continuous
$f(x)$
$f(x)$
b. $f^{\prime}(x)<0$ when $x<1$
c. $f^{\prime}(x)>0$ when $x>1$

d. $f^{\prime \prime}(x)>0$ when $x<1$
e. $f^{\prime \prime}(x)<0$ when $x>1$

f. $f^{\prime}(x)$ does not exist at $x=1$
g. f " (x) does not exist at $x=1$
6. a. $f(x)$ is continuous $[-4,3]$

$$
f(x)
$$

$f(x)$
b. $f^{\prime}(x)<0$ on $(-4,-2)$
c. $f^{\prime}(x)>0$ on $(-2,1) \cup(1,3)$

d. $f^{\prime}(x)=$ undef. at $x=-2$
e. $f(-2)=-3 \quad f(1)=3$

f. $f^{\prime}(x)=0$ at $\mathrm{x}=1$
g. $f^{\prime \prime}<0$ on $(-4,-2) \cup(-2,1)$
h. $f^{\prime \prime}>0$ on $(1,3)$
7. a. $f(x)$ is continuous

$$
f(x)
$$

$$
f(x)
$$

b. $f^{\prime}(x)>0$ everywhere
c. $f^{\prime}(x)=0$ when $x=-2, x=3$
d. $f^{\prime \prime}(x)<0$ on $(-\infty,-2) \cup(1,3)$
e. $f^{\prime \prime}(x)>0$ on $(-2,1) \cup(3, \infty)$

Curve Sketching - Graphing \boldsymbol{f} from \boldsymbol{f}^{\prime}

The graph of f^{\prime} is given below. Sketch a possible graph of f
1.

2.

3.

4.

5.

6.

7.
8.
9.

10.

Practice Test - The Meaning of Derivatives

1. Multiple Choice: If f is a differentiable function, the $f^{\prime}(a)$ is given by which of the following?
I. $\lim _{h \rightarrow a} \frac{f(a+h)-f(a)}{h}$
II. $\quad \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
III. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
a. II and III only
b. I and II only
c. III only
d. I and III only
e. I, II, III
2. A pot of hot soup is placed in the freezer to cool down. The temperature, T, of the soup at time t is given by the graph, where T is measured in ${ }^{\circ} F$ and t is measured in minutes. Estimate $T^{\prime}(35)$ and interpret its meaning.

3. Use the graph of f to determine all value(s) of x such that g is not differentiable. Give a reason for each answer.

4. a. Find the derivative of $f(x)=\frac{4}{x-5}$ at $x=7$.
b. Write the equation of the tangent line for part a.
5. a. Use the definition of derivative to find the derivative of $f(x)=x^{2}-3 x+2$.
b. Find an equation of the tangent line to the curve at the point where $x=-2$.
6. Find the derivative as a function of x if $\mathrm{f}(\mathrm{x})=\sqrt{5 x+2}$.
7. Below, in no particular order, are the graphs of $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$. Decide which graph goes with each function.

In \#8 and 9, Multiple Choice.
8. The graph of a function $y=f(x)$ is shown below. Which of the following are true for the function?
I. $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)$
II. $\quad f^{\prime}(2)$ is defined
III. $\quad f^{\prime}(x)<0$ for all x in the open interval $(-5,2)$

a. I only
b. II only
c. I and III
d. I and II
e. I, II, and III
9. $\lim _{h \rightarrow 0} \frac{\ln (e+h)-1}{h}=$
a. $\quad f^{\prime}(x)$ where $f(x)=\ln x$ at $x=0$
b. $\quad f^{\prime}(x)$ where $f(x)=\frac{\ln x}{x}$ at $x=e$
c. $f^{\prime}(x)$ where $f(x)=\ln x$ at $x=1$
d. $\quad f^{\prime}(x)$ where $f(x)=\ln (x+e)$ at $x=1$
e. $f^{\prime}(x)$ where $f(x)=\ln x$ at $x=e$
10. The diameter D of a metal shaft, measured in cm , is recorded at various times t, measured in minutes, during a particular manufacturing process. Given the table of values below,

\boldsymbol{t}	0	2	4	6	8	10
\boldsymbol{D}	1.112	1.130	1.144	1.139	1.127	1.109

(a) Find the average rate of change over the interval [0, 2]. Include units.
(b) Approximate the rate of change of D with respect to t when $t=2$ minutes. Include units.
11. The cost, C (in dollars) to produce g gallons of ice cream can be expressed as $C=f(g)$. Interpret the following in practical terms, giving units.
a) $f(400)=580$
b) $f^{\prime}(100)=2.9$
c) $f^{-1}(150)=65$
12. Suppose that the line tangent to the graph of $y=f(x)$ at $x=4$ passes through the points $(-2,6)$ and $(4,3)$. a) Find $f(4)$.
b) Find f^{\prime} (4).
13. Use the graph of f to determine the interval(s) of x that meet the following conditions.
a. $\quad f^{\prime}(x)>0$
b. $f^{\prime}(x)<0$
c. $f^{\prime \prime}(x)>0$

d. $f^{\prime \prime}(x)<0$
14. Given $f(4)=8$ and $f^{\prime}(4)=3$, find the equations for the tangent line to $f(x)$ at $x=4$.
15. Find the average rate of change of $f(x)=e^{x}+4$ over $[0,3]$.

Sketch the derivative of the following.
16.

19.

17.

20.

