Identifying and Naming Polynomial Functions

Unit 2

Polynomial Function:

A function comprised of a monomial, or the sum or difference of monomials.

- Must have REAL NUMBER coefficients
- Must have WHOLE NUMBER exponents
- Ex 1: Is it a polynomial? a) $f(x) = x^3 + 3x$

b) $f(x) = x^4 + 3z - 2x^2 - 5^x$

C) $f(x) = 6x^4 - 2x^{-1} + x$

d)
$$f(x) = -0.5 + \pi x^2 - \sqrt{2}$$

A polynomial is in <u>STANDARD FORM</u> when

The <u>DEGREE</u> is

The LEADING COEFFICIENT is

A <u>CONSTANT</u> is

Ex 2: Write in standard form. Then identify the degree, leading coefficient, and constant.

a) $g(x) = 2x^2 - 4 - 3x^4 + 12x^3$ Standard form:

Degree:

Leading coefficient:

Constant:

b) h(x) = 3 - xStandard form:

Degree:

Leading coefficient:

Constant:

Ex 3: You can classify polynomials by <u>DEGREE</u> and <u>NUMBER OF TERMS</u>.

Polynomial	# of terms	Name by # of terms	DEGREE	Name by Degree		
f(x) = 12						
k(x) = 8x						
$j(x) = 4x^2 + 3$						
$g(x) = 5x^3 + x^2$						
$h(x) = 3x^2 - 4x + 6$						
$s(t) = 7t^4 - 7t + 3$						
$f(x) = x^3 + 2x^2 - 8x - 1$						

Algebra 2

<u>Adding</u> : ① Combine like terms! ③ Write the result in standard form.	a) $(2x^3 + 7x - 4) + (2x^2 - 8x + 1)$ b) $(x + 5x^4 + 12x^2) + (x^4 - 10)$
Subtracting: ① Distribute the negative ② Combine like terms. ③ Write the result in standard form.	C) $(7 - 4x^2 - x) - (3x^2 + x + 12)$ d) $(6x^2 - 3) - (2x^3 + 5x^2 - 9x + 8)$
Multiplying: ① Distribute each term from one polynomial to each term in the other. ② Combine like terms. ③ Write the result in standard form.	e) $-2x(5x^2 - 3x + 1)$ f) $(3x - 4)(2x + 1)$ g) $(-3x + 2)(4x^2 + x - 9)$ h) $(2x + 5)^2$ i) $(x + 3)^3$

Practice

Identify the following characteristics:

$f(x) = 4x - 1 + 2x^4 + 1$	x^3 2.	$h(x) = 2x - 5x^2 + 4$
Standard form:		Standard form:
Degree:		Degree:
Leading coefficient:		Leading coefficient:
Constant:		Constant:
Degree: Leading coefficient: Constant:		Degree: Leading coefficient: Constant:

Classify the following polynomials by <u>DEGREE</u> and <u>TERMS</u>. (You should have 2 words for each.)

3.	$-4x^3 + x + 9$	6.	3
4.	$-5x^3 + 3x^2 + 4x - 2$	7.	$-3x^2 + 2$
5.	2x + 1	8.	$x^4 + 3x - 1$

Algebra 2	Name	ID: 1
Add, Subtract & Multiply Polynomials	reserved. Date	Period
Perform the indicated operation. Write your answ	ver in standard form.	
1) $(7r^3 + 5r^2 + 5r) + (4r^3 + 8r - 7r^4)$	2) $(2a^2 + a - 2a^3) - (-3 - a - 7a^3)$	
3) $(3+3x^2-5x)-(5x^2+1+7x)$	4) $(x^3 - 3 + 8x) + (-2x + 3x^3 - 8)$	
5) $(-1 + 2a + 5a^2) - (8a^3 + 3a^2 + 3)$	6) $(-5n^3 - 7 - 2n^4) - (-3n^4 - 7n^3 + 1)$	
7) $(-x^4 - 8x + 2x^2) + (8x^4 - 8x^2 - 7x^3 - 4x)$	8) $(8+3m^3+6m) - (-m+8m^3-7-3m)$	²)
9) $(-2v + 6 + v^2) + (v - v^2) + (-7v^2 - 8v)$	10) $(5v^3 + 4v^2) - (-5v^3 + 2v^4 + 7) + (6v - 10)$	- 5v ⁴)
11) $2(5b^2 + 2b - 5)$	12) $8p(2p^2 + 2p - 2)$	
13) $(5p+8)(-3p-5)$	14) $(k+7)(6k-2)$	
15) $(5m-4)(-2m+7)$	16) $(4p+4)(p+8)$	
17) $(6k-2)(2k-6)$	18) $(-8x-1)(2x+8)$	
19) $(-8n-7)(2n+6)$	20) $(x-4)(-7x-1)$	

21) $(8v+8)(-6v^2+8v+5)$ 22) $(-5n-7)(6n^2-6n+8)$

Binomial Expansion using Pascal's Triangle

We can use Pascal's Triangle to expand binomial expressions. Let's find the pattern...

 $(a + b)^0 = 1$ $(a + b)^1 = a + b$ $(a + b)^2 = (a + b)(a + b) =$ $(a + b)^3 = (a + b)(a + b)^2 =$

> Do you see the relationship among the exponents, coefficients, and Pascal's Triangle? Use the pattern to expand $(a + b)^4$

1: Simplify $(x + 3)^3$	Step 1: Locate the row and determine the number of terms.
	Step 2: Write the coefficients for the terms from Pascal's Triangle
	Step 3: Write in the powers of a , in descending order, starting with n .
	Step 4: Write in the powers of b, in increasing order, starting with 0.
	Step 5: Simplify each term.

Ex 2: Simplify $(x - 2)^4$

Ex

Ex 3: Simplify $(2x + 1)^5$

Don't forget PEMDAS

Ex 4: Simplify $(3x - 2)^3$

You Try	
1. $(x-2)^4$	
2. $(x + 5)^{3}$	
$3.(x+3)^5$	
4. $(3x + 1)^5$	

Algebra 2

Interval Notation is a way of writing subsets of real numbers.

Braces _____ define a set, but that set is limited to the specific elements named within.

Brackets _____ indicate that all numbers INCLUDING the given values are in the interval.

Parentheses _____ indicate that all numbers BETWEEN the given values are in the interval.

Ex 1: Use interval notation to describe the inequality shown or described.

a. x < 5 b. $x \ge -2$

We'll use interval notation to describe the domain and range of functions.

*For polynomial functions the DOMAIN will ALWAYS be ______.

c. −3 < $x \le 4$

x-intercept	y-intercept			
 The x-coordinate of the point(s) where the graph crosses the x-axis. (x, 0) Also known as ZEROS Can be calculated by substituting zero for y. A polynomial of degree n can have at most n real zeros 	 The y-coordinate of the point where the graph crosses the y-axis. (0, y) Can be calculated by substituting zero for x. Can a function have more than one y-intercept? 			

Ex 3: Identify the x- and y- intercepts.

y-intercept _____

x-intercept(s)_____

y-intercept _____

Ex 4: Find the y-intercepts: a. $y = 3x^4 + 5x^2 - 1$

Algebra 2

Domain, Range, and Intercepts Practice

The degree, *n*, of a polynomial function, can tell us a lot of helpful information:

- *n* = the maximum number of zeros, or x-intercepts
- n = the maximum number of directions in which the graph will travel
- (n -1) = the maximum number of turns/extrema
- End Behavior:
 - o if the degree is _____, the ends of the graph will go in ______ directions
 - o if the degree is _____, the ends of the graph will go in _____ directions

Maximum and Minimum Values

Degree

These are the _____ - coordinates of the turning points of the graph.

- Absolute maximum is the _____ point on the graph
- Absolute minimum is the ______ point on the graph
- Relative maximum is found at the _____ of a peak, and is higher than any point nearby.
- Relative minimum is found at the _____ of a valley, and is lower than any point nearby.

Maximum and minimum values are called ______.

Ex 1: Determine the least possible degree of the function shown.

To find the least possible degree, count the number of extrema, and _____ 1.

Ex 2: Determine the maximum number of extrema.

a. $f(x) = 2x^3 - 3x^2 + 5$ b. $y = -3x^4 + 2x^2 - 1$

To find the maximum number of extrema, take the degree and _____1.

C.
$$g(x) = x^5 + 3x^4 - x^3 - 3x^2$$

End Behavior

Describes whether the y-values of a function increase or decrease as the x-values approach positive infinity on the right, and as the x-values approach negative infinity on the left.

Think: As x goes to the RIGHT (toward positive infinity), does the end of the graph go up or down?	Say: "As x approaches infinity, f of x approaches"	Write: As $x \rightarrow \infty$, f(x) \rightarrow		
Think: As x goes to the LEFT (toward negative infinity), does the end of the graph	Say: "As x approaches negative infinity, f of x approaches "	Write: As $x \rightarrow -\infty$, f(x) \rightarrow		
go up or down?				

Ex 3: Describe the end behavior of each graph.

End behavior can also be determined by looking at the leading coefficient and degree of the function.

	ODD EVEN
Leading Coefficient / Degree tel	s us what Degree Degree
tells us what happens happens o	n the LEFT: POSITIVE
on the RIGHT : (same as the same as the s	ne right, Leading
or op	posite?) Coefficient
POSITIVE EVEN	NEGATIVE
	Leading
	Coefficient

Ex 4: Determine the end behavior of the function.

a. $f(x) = -2x^3 + x - 4$	b. $f(x) = x^4 + 2x^3 - x^2 - 1$	C. $f(x) = 6x^5 - 4x^3 - 9$
$x \to +\infty f(x) \to ___$	$x \to +\infty f(x) \to ___$	$x \to +\infty f(x) \to ___$
$x \to -\infty$ $f(x) \to $	$x \rightarrow -\infty f(x) \rightarrow ___$	$x \rightarrow -\infty f(x) \rightarrow ___$

Putting it all together!

Ex 5: Given the polynomial and zeros, sketch a graph and determine the characteristics

Name:_____

Date:_____

Complete	the	following	table	f∩r	each	nol	vnomial	function
Complete		1011011119	IGNIC	101	oden	PUL	ynionnai	

Function	Degree	End Behavior	Domain
1. $f(x) = x^3 - x^2 - 8x + 12$		As $x \to \infty f(x) \to$ As $x \to -\infty f(x) \to$	
2. $f(x) = 3x^3 - 12x + 4$		As $x \to \infty f(x) \to$ As $x \to -\infty f(x) \to$	
3. $f(x) = -2x^3 + 4x^2 + x - 2$		As $x \to \infty f(x) \to$ As $x \to -\infty f(x) \to$	
4. $f(x) = x^4 + 5x^3 + 5x^2 - x - 6$		As $x \to \infty f(x) \to$ As $x \to -\infty f(x) \to$	
5. $f(x) = x^4 + 2x^3 - 5x^2 - 6x$		As $x \to \infty f(x) \to$ As $x \to -\infty f(x) \to$	

Use the equations to answer the following:

Function	Degree	Max # of Extrema
6. $f(x) = x^3 - x^2 - 8x + 12$		
7. $f(x) = 3x^3 - 12x + 4$		
8. $f(x) = -2x^3 + 4x^2 + x - 2$		
9. $f(x) = x^4 + 5x^3 + 5x^2 - x - 6$		
10. $f(x) = x^4 + 2x^3 - 5x^2 - 6x$		

Determine the end behavior and maximum number of extrema without using a calculator:

$f(x) = -8x^5 - 7x^3 + 3x - 7$	$f(x) = 12 - 3x^3 + 5x^3 - 7x^4$	
11. $x \rightarrow +\infty$ f(x) \rightarrow extrema	12. $x \to +\infty$ $f(x) \to $	extrema
$x \to -\infty$ $f(x) \to $	$x \to -\infty$ $f(x) \to $	
$f(x) = 1 - 3x - 2x^2 - 5x^3 + 7x^4 - 12x^5$	$f(x) = -7x^3 + 343$	
13. $x \rightarrow +\infty$ f(x) \rightarrow extrema	14. $x \to +\infty$ $f(x) \to $	extrema
$x \to -\infty$ $f(x) \to $	$x \rightarrow -\infty$ $f(x) \rightarrow $	

Find the number of zeros, y-int, & end behavior. Sketch the graph:

17. Determine the following characteristics for the graph shown:

Domain:	Range:
Abs. Max:	Abs. Min:
Rel. Max:	Rel. Min:
Min. degree	Sign of leading Coeff.

Algebra 2

Intervals of Increase and Decrease

Interval of Increase: Using interval notation, name the **x-values** between which the y-values increase **Interval of Decrease**: Using interval notation, name the **x-values** between which the y-values decrease

	Increasing, Decreasing, & Constant	Extrema
	Increasing	Absolute Minimum
(-1.33, 1.19)	Decreasing	Absolute Maximum
	Constant	Relative Minimum(s)
		Relative Maximum(s)
	Increasing	Absolute Minimum
	Decreasing	Absolute Maximum
	Constant	Relative Minimum(s)
		Relative Maximum(s)
	Increasing	Absolute Minimum
	Decreasing	Absolute Maximum
	Constant	Relative Minimum(s)
		Relative Maximum(s)

4.	Increasing	Absolute Minimum
	Decreasing	Absolute Maximum
	Constant	Relative Minimum(s)
-8 -10 -12 (0.87, -12.25) (3.63, -6.39) (3.63, -6.39) (3.63, -6.39)		Relative Maximum(s)
5 .	Increasing	Absolute Minimum
	Decreasing	Absolute Maximum
-10 -12 -14(0,-13)	Constant	Relative Minimum(s)
		Relative Maximum(s)
6.	Increasing	Absolute Minimum
	Decreasing	Absolute Maximum
	Constant	Relative Minimum(s)
-6 (-2.12, -4.06) -6		Relative Maximum(s)

Characteristics of Polynomial Functions Practice

Unit 2

Alo	ae	bro	a 2
	-, -		

Algebra 2 Characteristics of Poly	nomial Functions Practice	<u>Unit 2</u>
5. $f(x) = -2x^2 + x + 6$	6. $f(x) = x^3 + 3x^2 - 4x - 12$	
Rel. Max: Rel. Min:	Rel. Max: Rel. Min:	_
Abs. Max: Abs. Min:	Abs. Max: Abs. Min:	_
Inc: Dec:	Inc: Dec:	-
Domain: Range:	Domain: Range:	_
	(-2.5, 1.1) (-2.5, 1.1) (-2.5	
Identify the y-intercept and the <u># of zeros</u>		
7. $f(x) = x^3 - 16$	8. $f(x) = x^2 + x - 1$	
Y-Int: # of Zeros:	Y-Int: # of Zeros:	
9. $f(x) = 9x^4 + x^3 - 3x - 10$	10. $f(x) = x^3 - x - 2$	
Y-Int: # of Zeros:	Y-Int: # of Zeros:	
11. f(x) = 7x	12. $f(x) = -2x^3 + 7$	
Y-Int: # of Zeros:	Y-Int: # of Zeros:	

0 F	Relation: Any set of			
0	Function: A	such that every single	has	
e	exactly output	Ex: {(5, 2), (2, 8), (3, -1), (5, 4)}		
		Ex: {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}		
Functio	on Notation:			
Functio	on notation replaces wi	ith to show that an equation re	epresents a	
	·			
οI	t is pronounced			
	Ex: $y = 2x + 4$ is the same of	as		
0	When evaluating functions, it also	o shows the relationship between the		
C	and values.			
	Ex: Evaluate $f(x) = 2x + 4y$	when $x = 2$		
	C			
Ex 1: Given the functions $f(x) = 6x^2 - 3x + 5$ and $g(x) = 4x^2 + 5x - 8$				
C	a. Find $f(x) + g(x)$	b. Find $g(x) - f(x)$		
Ex 2: G	iven the functions $f(x) = 6x^2 - x + 3$	and $g(x) = x^2 + 3x$, find 2f(x) + 3g(x)		
Ex 3: G	iven the functions $f(x) = 2x - 4$ and	$g(x) = x^2 - 3$, find $g(x) \bullet f(x)$		
F ., f C		$\nabla = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right]$		
EX 4: GI	ven the functions $[f(x) = 4x^2 - 2x + \frac{1}{2}]$	$ana[g(x) = x^{-} + / x - \delta]$ b Find $Aa(-2) - f(-2)$		
U. FI	(3) + 9(3)	$D. T = 2 + 2 (-2)^{-1} (-2)$		

Function composition is applying the rule of one function to another function.

f(g(x)) is read as _____

 $\circ g(x)$ is the input function, because it is ______ the parentheses.

• Substitute g(x) into the rule of f(x) in the place of each x. Then simplify.

• This is sometimes denoted as $(f \circ g)(x)$. In this case, g(x) is the input function.

*Pay attention to the order of the functions to know which one is the inside function.

Ex 5: Given
$$f(x) = x^2 + 2$$
 $g(x) = 3x - 8$ $h(x) = -2x^2 + 1$ and $j(x) = 4x - 3$
a. Find $g(f(x))$ b. Find $g(h(x))$

c. Find f(g(x)) d. Find j(j(x))

e. Find j(h(x)) f. Find g(j(2))

g. Find g(g(-3)) h. Find f(j(-4))

Algebra 2	Name	
© 2021 Kuta Software LLC. All rights r Function Operations & Compositions	ese r v e d . Date	Period
Perform the indicated operation.		
1) $f(a) = -4a + 4$ $g(a) = a^{3} - 2$ Find $f(a) - g(a)$	2) $h(t) = 3t + 3$ $g(t) = -t^2 - 5t$ Find $(h - g)(t)$	
3) $f(t) = 4t - 3$ $g(t) = t^2 - 3t$ Find $(f \cdot g)(t)$	4) $f(n) = 4n + 2$ $g(n) = n^{2} - 1$ Find $f(n) - g(n)$	

5)
$$f(x) = x^3 - 4x$$

 $g(x) = 2x + 3$
Find $f(x) + g(x)$
6) $h(a) = 4a - 5$
 $g(a) = a^3 - 2a^2$
Find $h(a) \cdot g(a)$

7)
$$f(t) = 4t + 3$$

 $g(t) = -2t^2 - 2$
Find $f(t) \cdot g(t)$
8) $h(t) = t^2 - 4t$
 $g(t) = 2t - 3$
Find $h(t) \cdot g(t)$

Perform the indicated operation

9)
$$h(n) = 4n - 1$$

 $g(n) = n^2 + 3n$
Find $h(g(n))$
10) $g(n) = n^2 - 4n$
 $f(n) = 4n + 3$
Find $g(f(n))$

11)
$$h(n) = n^3 - 4n^2$$

 $g(n) = 4n + 4$
Find $h(g(n))$

12)
$$g(x) = x^{2} - 1$$

 $h(x) = 2x - 2$
Find $g(h(x))$

13)
$$h(n) = 4n - 1$$
 14) $g(n) = n^2 - 2$
 $g(n) = 3n^3 - 5n^2$
 $h(n) = 4n - 3$

 Find $h(g(n))$
 Find $g(h(n))$

Perform the indicated operation.

15)
$$h(x) = x^2 + 2x$$

 $g(x) = x - 4$
Find $h(g(-7))$
16) $g(x) = 4x$
 $h(x) = x - 5$
Find $g(h(-9))$

17)
$$g(a) = a^3 + 5a$$

 $f(a) = a + 3$
Find $g(-3) + f(-3)$
18) $g(n) = 2n + 3$
 $f(n) = n^3 - 3$
Find $g(2) \cdot f(2)$

19)
$$g(x) = 3x + 5$$

 $h(x) = x + 4$
Find $g(-10) + h(-10)$
20) $h(a) = a^2 - 1$
 $g(a) = -a - 5$
Find $h(5) - g(5)$

Reca	II that a relation is a set of	, such as {(1,5),(2,6), (3,7)}.
The_	relation is the set of ordered pairs obto	ained by
the x	and y coordinates in each of the ordered pairs: {(,	_),(,), (,)}.
0	Notice that the domain of the relation becomes the	of its inverse,
	and the range of the relation becomes the	of its inverse.
0	Inverse relations are reflected over the line	
Ex 1: ⁻	The ordered pairs of the relation {(-2,0), (-1,5), (-3,4)} are the coordinates of the vertices of a triangle. a. Find the inverse of this relation. b. Plot the two relations and observe the line of reflection.	
Giver	To find the inverse of a function: 1. Replace $f(x)$ with y . 2. Switch x and y . 3. Solve for y . 4. Rewrite using $f^{-1}(x)$ notation.	. We read this as

Ex 2: Given the function f(x) = x + 4, find f'(x).

Then sketch both functions and the line of reflection y = x.

Ex 3: Find the inverse of the function. Then graph the function and its inverse.

Verifying Inverse Functions

f(x) and g(x) are inverses if and only if

$$f(g(x)) = x$$
 and $g(f(x)) = x$

Two functions are inverses if and only if both of their compositions are equal to _____.

Ex 4: Determine whether the given functions are inverses. Explain your reasoning.

a.
$$f(x) = \frac{3}{4}x - 8$$

 $g(x) = \frac{4}{2}x + 8$
b. $f(x) = \frac{1}{9}(x + 3)^2$
 $h(x) = 3\sqrt{x} - 3$

You Try		
1. Write the inverse of the relation $\{(-4, 2)\}$	1), (0, 2), (7, 1), (5, 3)}.	
2. Find the inverse of the function $f(x) =$	= 3. Determine whether $g(x) = -6x$ and	
4x-6.	$h(x) = \frac{1}{\epsilon}x$ are inverse functions.	
	0	

Algebra 2	Name	
© 2021 Kuta Software LLC. All rights res	erved.	
Inverse Functions	Date	Period
Find the inverse of each function.		

1)
$$f(x) = \frac{-3x - 12}{8}$$
 2) $f(x) = (x+1)^3 - 1$

3)
$$g(n) = -3n - 15$$

4) $f(x) = \sqrt[3]{x - 1} + 2$

5)
$$h(x) = \frac{-5x - 10}{4}$$
 6) $f(n) = n - 2$

7)
$$h(x) = (x+1)^3 + 2$$

8) $g(x) = \sqrt[3]{x+3} + 2$

Use composition of functions, for example f(g(x)) and g(f(x)), to determine whether the two functions are inverses or not.

9)
$$f(n) = -n - 4$$

 $g(n) = -n - 4$
10) $f(x) = \frac{16 - 3x}{4}$
 $g(x) = \frac{3x - 3}{2}$

11)
$$f(x) = \frac{-9 - x}{3}$$

 $h(x) = -3x - 9$
12) $g(x) = \frac{1}{3}x - \frac{4}{3}$
 $f(x) = 3x + 4$

13)
$$h(n) = \sqrt[3]{n+1}$$

 $f(n) = (n-1)^3$
14) $g(x) = \frac{3x-9}{5}$
 $f(x) = \frac{9+5x}{3}$

15)
$$g(x) = 9x + 5$$

 $f(x) = -x - 5$
16) $f(x) = (x - 2)^3 - 3$
 $g(x) = \sqrt[3]{x + 3} + 2$

Date

Classify • Writ	e all answers in ndard Form	 List all the names for 	
 Side Side Side Side Side Side Side Cla Poly on I Terr Lea first star Cor with 	reatest exp to ast ssify nomials based Degree and # ns ding Coeff - coeff in ndard form nstant – Term nout a variable	Degree: 0 1 2 3 4 Number of Terms: 1 2 3 4	2. $f(x) = x + 2 - x^2 - 4x^4$ Standard form: Leading coefficient: Constant: Name of Degree: Name by # terms: # of zeros: # of turns: End behavior: $as x \to +\infty, f(x) \to$ $as x \to -\infty, f(x) \to$
Adding and Adding: Subtracting > Cor Subtracting > Dist neg opp > Cor	mbine like terms ting: ribute the gative (add the posite) mbine like terms	3. $(3x^2 + 7 + x) + (14x^3 + 2 + x^2 - x)$	4. $(1 - x^2) - (3x^2 + 2x - 5)$
Multiply Polynomials • Dist terr qua terr • Mul coe exp	ribute each n in the first antity to each n in the second tiply efficients, add oonents	5. $(3x^2)(2x^2 + 9x - 6)$	6. $(x - y)(x^2 - xy + y^2)$
Combining FunctionsGiven: $f(x) = 2$ $g(x) = -$	$x^{2} + 5x - 3$ -4x + 5	 7. Find f(x) - 2g(x) 9. Find f(g(x)) 	 8. Find g(x) ⋅ f(x) 10. Find f(-2) + g(3)

Algebra 2	Polyne	omial Functions Test Review	Unit 2
What you need to know & be able to do	Things to remember	Problem	Problem
Inverses	 Finding Inverses Replace f(x) with y Switch x & y Solve for y Proving Inverses 	11. $f(x) = 3x - 7$; find $f^{-1}(x)$ 13. $f(x) = 2x - 5$; $g(x) = -2x + 5$	12. $g(x) = \frac{1}{4}x + 3$; find $g^{-1}(x)$ 14. $f(x) = 2x + 8$; $g(x) = \frac{1}{2}x - 4$
	• Use compositions • $f(g(x)) = x$ • $g(f(x)) = x$		
Characteristics of Polynomial Graphs	 a) Domain: x values b) Range: y values c) Zeros: x-intercepts d) # of extrema – turning points e) Relative max: y-values at peaks f) Relative min: y- values at valleys g) Absolute Max – highest y-value h) Absolute Min – lowest y-value i) Intervals of increase: x-values 	15. (-1.869, 6.065) 5 0 (0.535, -0.879)	Domain: Range: Zeros: # of extrema: Relative max: Relative min: Absolute Max: Absolute Max: Absolute Min: Intervals of inc: Intervals of dec: End behavior: As $x \to +\infty$, $f(x) \to$ As $x \to -\infty$, $f(x) \to$
	 ising toward right intervals of decrease: x values where graph is falling toward right k) End behavior: direction that the ends of the graph are going 	16. 10 (0.319, 8,643) 5 0 5 (-1.569, -3.124)	Domain: Range: Zeros: # of extrema: Relative max: Absolute Max: Absolute Min: Intervals of inc: Intervals of dec: End behavior: $As \ x \to +\infty, f(x) \to \$ $As \ x \to -\infty, f(x) \to \$