November Break Extra Credit

1. Find the domain of $f(x)=\sqrt{2 x+3}$
2. Find the domain of the function $f(x)=$ $\ln (5 x-2)$
3. Assume $f(x)=\frac{e^{x}}{e^{x}-1}$. Find $f^{-1}(x)$.
4. $\lim _{h \rightarrow 16} \frac{x-16}{\sqrt{x}-4}=$
5. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 8 x}=$
6. Which of the following
functions are continuous for all real numbers x ?
a. $y=\frac{x^{2}+5}{x^{2}+2}$
b. $y=\frac{3}{x^{2}}$
c. $y=|2 x-7|$
7. Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+5, & x>5 \\
3 a x, & x \leq 5
\end{array}\right.
$$

For what value of a is the function continuous?
4. Find the asymptotes of $y=\frac{5 x-14}{x^{2}-4 x}$
6. $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{2}}=$
8. $\lim _{x \rightarrow 7^{-}} \frac{x+9}{x-7}=$
10. Let f be defined as follows:

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-9}{x-3}, & x \neq 3 \\
1, & x=3
\end{array}\right.
$$

Which of the following are true about f ?
a. $\lim _{x \rightarrow 3} f(x)$ exists
b. $f(3)$ exists
c. $f(x)$ is continuous at $x=3$
12. By applying the Intermediate Value Theorem, what interval will $2^{x}=$ $\sin (2 x)+5$ have a solution?
13. The function f and g are differentiable and have the values shown in the table. If $A=f \cdot g$ the $A^{\prime}(0)=$

x	f	f^{\prime}	g	g^{\prime}
0	6	1	-8	$1 / 3$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

15. A function f is given by the table shown. Estimate $f^{\prime}(4.3)$.

x	3.7	4.3	4.9	5.5	6.1
$f(x)$	1.8	3.4	4.6	6.4	8.4

16. A function f is given by the table shown and is differentiable over its domain. What is the best estimate of $f^{\prime}(0.14)$?

x	0.14	0.34	0.54	0.74	0.94
$f(x)$	9.352	7.044	4.826	2.102	0.288

18. Let $f(x)=x^{2}(x-3)$. Over what interval is the function increasing?
19. Given the function $f(x)-1=x^{3}$ satisfies the hypothesis of the Mean Value Theorem on the interval $[-2,4]$, find the number C in the interval $(-2,4)$ which satisfies this theorem.
20. What is the average rate of change over $2 \leq t \leq 4$?

t	2	3	4	5	6
$f(t)$	1.8	3.4	4.6	6.4	8.4

22. Given the position function $s=t^{2}+9 t-$ 5 , what is the instantaneous rate of change at $t=3$?
23. Find the point of inflection of $f(x)=x^{3}-3 x^{2}-x+7$
24. Find the interval(s) on which the curve $y=x^{3}-3 x^{2}-9 x+6$ is concave upward or concave downward.
25. Given a continuous function f and the following information, sketch a possible graph of f.

Interval	Sign of f^{\prime}	Sign of $f^{\prime \prime}$
$x<-4$	+	-
$-4<x$	-	-
<-2		+
$-2<x<0$	-	+
$0<x$	+	

27. If $y=\ln \left(x^{2}+3 x\right)$, then $\frac{d y}{d x}=$
28. A curve is defined by $y=e^{\sin 2 x}$. Find $\frac{d y}{d x}$.
29. Find $\frac{d y}{d x}$ given $y=\ln (8-x)^{4}$
30. Find the critical numbers, if any, of $f(x)=\frac{x-1}{x+3}$
31. Find the slope of the tangent line to the graph of $y=\ln \left(x e^{x}\right)$ at the point where $x=3$.
32. Given a function defined by $f(x)=3 x^{5}-5 x^{3}+12$, for what value(s) of x is there a relative maximum?
33. Given $f(x)=x^{3}-3 x^{2}-9 x$ find the absolute maximum value on the closed interval [0,6].
34. Given $f(x)=\frac{x}{\tan x}$, find $f^{\prime}\left(\frac{3 \pi}{4}\right)$
35.

If $f(x)=\cos ^{4} x$, then $f^{\prime}\left(\frac{\pi}{3}\right)=$
36. Find the derivative, $\frac{d y}{d x}$, of $y=\frac{2 x}{1-3 x^{2}}$.
38. Find the derivative of $x^{2} f(x)$
40. Find an equation for the tangent line
32. Find the relative extrema of the function $f(x)=3 x^{5}-5 x^{3}$?
39. If $f(x)=\sin x \cos x$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
to the graph of $f(x)=\sqrt{x-7}$ at the point where $x=16$.
42. Given $y=\arcsin (5 x)$, then $\frac{d y}{d x}=$
43.

Find the derivative: $s(t)=\sin \left(\frac{t}{2}\right)$
44. Given $2 x=x y+y^{2}$, then $\frac{d y}{d x}=$
45. Given $2 x^{2}+x y+3 y^{2}=0$, then $\frac{d y}{d x}=$
46. A projectile starts at time $t=0$ and moves along the x-axis so that its position at any time $t \geq 0$ is $x(t)=t^{3}$ $6 t^{2}+9 t+12$. What is the velocity of the particle at $t=0$.
47. A projectile starts at time $t=$ 0 and moves along the x-axis so that its position at any time $t \geq 0$ is $x(t)=t^{3}-6 t^{2}+9 t+12$. During what time intervals is the particle moving to the left?
49. A man $2 m$ tall walks away from a lamppost whose light is $5 m$ above the ground. If he walks at a speed of $1.4 \mathrm{~m} / \mathrm{s}$, at what rate is his shadow growing when he is 10 m from the lamppost?
48. A point moves along the curve $y=\sqrt{x}$ in such a way that the y-value is increasing at the rate of 2 units per second. At what rate is x changing when $x=\frac{1}{2}$?
50. A balloon rises vertically at the rate of $10 \mathrm{ft} / \mathrm{sec}$. A person watches the balloon ascend from a point on the ground $100 f t$ away from the spot below the rising balloon.
51. Evaluate $\int \frac{2 x^{2}+3 x^{\frac{1}{2}}+4}{x^{\frac{1}{2}}} d x$
52. Evaluate $\int_{0}^{16} 2 \sqrt[4]{x^{3}} d x$
53. Evaluate $\int_{2}^{7}|x-4| d x$
55. Evaluate $\int x\left(x^{2}-1\right)^{4} d x$
57. Evaluate $\int x \sqrt{x+1} d x$
59. Find the indefinite integral:
$\int \frac{x}{16+x^{4}} d x$
54. Suppose $\int_{0}^{5} f(x) d x=7$ and $\int_{2}^{5} f(x) d x=-1$ find $\int_{0}^{2} f(x) d x$
56. If $\frac{d y}{d x}=\cos ^{7} x \sin x$, then $y=$
58. Evaluate $\int \frac{7 e^{x}}{e^{x}+5} d x$
60. On the planet Mathematica the population in the year 2000 was about 8 billion. If the population is growing according to $P(t)=8 e^{0.021 t}$ then write a definite integral that gives the population for the 10 -year period starting from the year 2000. Assume $t=0$ at the beginning of the year 2000 .
61. Evaluate $\frac{d}{d x} \int_{1}^{x} \sqrt{3 \cos ^{2} t+4} d t$
63. Find the equation of the family of curves $\frac{d y}{d x}=12 x^{2}+4 x$ that passes through the point $(-1,-5)$

Calculator Section
65. Which of the following is an approximate root of $y=\sin (3 x)+$ 1
67. If $f(5)=9$ and $f^{\prime}(5)=-2$, then $f(5.011)=$
66. If $f(7)=2$ and $f^{\prime}(7)=9$, then the tangent line approximation at $x=7$ is what?
68. Consider the integral $\int \frac{1}{x} d x$ from $x=1$ to $x=4$. Using a Riemann sum with 6 sub-intervals calculate the area under the curve, and above the x-axis, using right endpoints. Answer to 3 decimal places.
69. Use a Trapezoidal approximation 70. The following table shows selected for $\int_{1}^{3} x^{3} d x$ with $n=4$. coordinates for $y=f(x)$. Given that f is continuous on $[1,4]$, find a trapezoidal approximation with $n=3$, for the area under the curve from $x=1$ to $x=4$.

x	1	2	3	4
y	1.2	2.3	2.5	4.9

