November Break Extra Credit

1.	Find the domain of $f(x) = \sqrt{2x+3}$	2.	Find the domain of the function $f(x) = \ln(5x-2)$
3.	Assume $f(x) = \frac{e^x}{e^x - 1}$. Find $f^{-1}(x)$.	4.	Find the asymptotes of $y = \frac{5x-14}{x^2-4x}$
5.	$\lim_{h \to 16} \frac{x-16}{\sqrt{x}-4} =$	6.	$\lim_{x \to -3} \frac{1}{(x+3)^2} =$
7.	$\lim_{x \to 0} \frac{\sin 5x}{\sin 8x} =$	8.	$\lim_{x \to 7^{-}} \frac{x+9}{x-7} =$
9.	Which of the following functions are continuous for all real numbers x? a. $y = \frac{x^2+5}{x^2+2}$ b. $y = \frac{3}{x^2}$ c. $y = 2x - 7 $	10.	Let f be defined as follows: $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3\\ 1, & x = 3 \end{cases}$ Which of the following are true about f ? a. $\lim_{x \to 3} f(x)$ exists b. $f(3)$ exists c. $f(x)$ is continuous at $x = 3$

- 11. Consider the function $f(x) = \begin{cases} x^2 + 5, & x > 5\\ 3ax, & x \le 5 \end{cases}$ For what value of *a* is the function continuous?
- 12. By applying the Intermediate Value Theorem, what interval will $2^x = sin(2x) + 5$ have a solution?

13. The function f and g are differentiable and have the values shown in the table. If $A = f \cdot g$ the A'(0) =

x	f	f'	g	g'
0	6	1	-8	1/3
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

14. The function f and g are differentiable and have the values shown in the table. If $A = \sqrt{f(x)}$ the A'(-2) =

x	f	f'	g	g'
0	6	1	-8	1/3
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

15. A function f is given by the 1 table shown. Estimate f'(4.3).

CUDIC	SHOWL	. Ц.		.) (1	
x	3.7	4.3	4.9	5.5	6.1
f(x)	1.8	3.4	4.6	6.4	8.4

16. A function f is given by the table shown and is differentiable over its domain. What is the best estimate of f'(0.14)?

x	0.14	0.34	0.54	0.74	0.94
f(x)	9.352	7.044	4.826	2.102	0.288

- 17. At which of the five points shown on the graph are $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ both positive?
- 18. Let $f(x) = x^2(x-3)$. Over what interval is the function increasing?

- 19. Let $f(x) = \ln x^x$. Over what interval is the function increasing or decreasing?
- 20. Given the function $f(x) 1 = x^3$ satisfies the hypothesis of the Mean Value Theorem on the interval [-2,4], find the number C in the interval (-2,4) which satisfies this theorem.

change over $2 \le t \le 4$?

t	2	3	4	5	6
f(t)	1.8	3.4	4.6	6.4	8.4

21. What is the average rate of 22. Given the position function $s = t^2 + 9t - t^2$ 5, what is the instantaneous rate of change at t = 3?

23. Find the point of inflection of 24. Find the interval(s) on which the $f(x) = x^3 - 3x^2 - x + 7$

curve $y = x^3 - 3x^2 - 9x + 6$ is concave upward or concave downward.

25. Given a continuous function fand the following information, sketch a possible graph of f

$$26 \cdot \lim_{x \to 0} \frac{e^x - e^{-x}}{4x} =$$

skeeen a possible graph of J.					
Interval	Sign of	Sign of			
	f'	f"			
x < -4	+	—			
-4 < x	—	—			
< -2					
-2 < x < 0	—	+			
0 < x	+	+			

27. If
$$y = \ln(x^2 + 3x)$$
, then $\frac{dy}{dx} =$ 28. Find $\frac{dy}{dx}$ given $y = \ln(8 - x)^4$

29. A curve is defined by $y = e^{\sin 2x}$. 30. Find the critical numbers, if any, of $f(x) = \frac{x-1}{x+3}$ Find $\frac{dy}{dx}$.

- value(s) of x is there a relative maximum?
- 31. Given a function defined by $f(x) = 3x^5 5x^3 + 12$, for what $f(x) = 3x^5 5x^3 + 2$, for what $f(x) = 3x^5 5x^3$?

33. Given $f(x) = x^3 - 3x^2 - 9x$ find the 34. If $f(x) = \cos^4 x$, then $f'\left(\frac{\pi}{3}\right) =$ absolute maximum value on the closed interval [0,6].

35. Given
$$f(x) = \frac{x}{\tan x}$$
, find $f'\left(\frac{3\pi}{4}\right)$ 36. Find the derivative, $\frac{dy}{dx}$, of $y = \frac{2x}{1-3x^2}$

37. If
$$f(x) = \frac{x^3 + 3x^2 + 2}{x}$$
, then $f'(1) = 38$. Find the derivative of $x^2 f(x)$

^{39.} If
$$f(x) = \sin x \cos x$$
, then $f'\left(\frac{\pi}{6}\right) =$
to the graph of $f(x) = \sqrt{x-7}$ at the point where $x = 16$.

41. Find the slope of the tangent 42. Given $y = \arcsin(5x)$, then $\frac{dy}{dx} =$ line to the graph of $y = \ln(xe^x)$ at the point where x = 3.

43. Find the derivative: $s(t) = \sin\left(\frac{t}{2}\right)$ 44. Given $2x = xy + y^2$, then $\frac{dy}{dx} =$

45. Given
$$2x^2 + xy + 3y^2 = 0$$
, then $\frac{dy}{dx} =$ 46. A projectile starts at time $t = 0$ and
moves along the *x*-axis so that its
position at any time $t \ge 0$ is $x(t) = t^3 - 6t^2 + 9t + 12$. What is the velocity of
the particle at $t = 0$.

47. A projectile starts at time t = 48. A point moves along the curve $y = \sqrt{x}$ in such a way that the y-value is increasing at the rate of 2 units per second. At what rate is x changing when $x = \frac{1}{2}$?

- 49. A man 2m tall walks away from a lamppost whose light is 5m above the ground. If he walks at a speed of 1.4 m/s, at what rate is his shadow growing when he is 10m from the lamppost?
- 50. A balloon rises vertically at the rate of 10 ft/sec. A person watches the balloon ascend from a point on the ground 100 ft away from the spot below the rising balloon.

51. Evaluate
$$\int \frac{2x^2 + 3x^{\frac{1}{2}} + 4}{x^{\frac{1}{2}}} dx$$

52. Evaluate $\int_0^{16} 2\sqrt[4]{x^3} dx$

⁵³. Evaluate $\int_2^7 |x-4| dx$ find $\int_0^2 f(x) dx = 7$ and $\int_2^5 f(x) dx = -1$ find $\int_0^2 f(x) dx$

55. Evaluate
$$\int x(x^2-1)^4 dx$$
 56. If $\frac{dy}{dx} = \cos^7 x \sin x$, then $y =$

57. Evaluate $\int x\sqrt{x+1} \, dx$ 58. Evaluate $\int \frac{7e^x}{e^{x+5}} dx$

- 59. Find the indefinite integral: $\int \frac{x}{16+x^4} dx$ 60. On the planet Mathematica the population in the year 2000 was about 8 billion. If the population is growing according to $P(t) = 8e^{0.021t}$ then write a definite integral that gives the population for the 10-year period starting from the year 2000. Assume t = 0 at the beginning of the year 2000.
- 61. Evaluate $\frac{d}{dx} \int_{1}^{x} \sqrt{3\cos^2 t + 4} dt$ 61. Evaluate $\frac{d}{dx} \int_{1}^{1} \frac{dt}{2t-5}$

63. Find the equation of the family 64. Evaluate $\int x^2 \ln x \, dx$ of curves $\frac{dy}{dx} = 12x^2 + 4x$ that passes through the point (-1, -5)

```
Calculator Section

65. Which of the following is an approximate root of y = \sin(3x) + 1

66. If f(7) = 2 and f'(7) = 9, then the tangent line approximation at x = 7 is what?
```

67. If f(5) = 9 and f'(5) = -2, then f(5.011) =

⁶⁸. Consider the integral $\int \frac{1}{x} dx$ from x = 1 to x = 4. Using a Riemann sum with 6 sub-intervals calculate the area under the curve, and above the x-axis, using right endpoints. Answer to 3 decimal places.

69. Use a Trapezoidal approximation 70. The following table shows selected for $\int_1^3 x^3 dx$ with n = 4. The following table shows selected coordinates for y = f(x). Given that fis continuous on [1,4], find a trapezoidal approximation with n = 3, for the area under the curve from x = 1

> to x = 4.
> x
> 1
> 2
> 3
> 4
>
>
> y
> 1.2
> 2.3
> 2.5
> 4.9

⁷¹. Approximate $\int_{0.3}^{7.6} \frac{1}{\sqrt[4]{x}} dx$