

AVERAGE FUNCTION VALUE FOR INTEGRALS

Avergey walle $=\frac{1}{b-a} \int_{x}^{A} f(x) d x$

The pertargle has the same areas the shaded region under the curve.

$f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

AVERAGE FUNCTION VALUE FOR INTEGRALS
 $$
f_{a v e}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The area under the curve $f(x)$ for the interval of [a, b] is equal to the area of the rectangle whose width is $\mathrm{b}-\mathrm{a}$ and the height is equal to the average value.
find the average value of the function over the given INTERVAL

$$
\begin{align*}
& \text { 1. } \begin{aligned}
f(x) & =-x^{2}+2 x+1 \\
f_{\text {ave }}= & \frac{1}{4-1} \int_{1}^{4}-x^{2}+2 x+1 d x \\
= & \frac{1}{3}\left(-\frac{x^{3}}{3}+x^{2}+\left.x\right|_{1} ^{4}\right) \\
= & \frac{1}{3}\left(\left(-\frac{64}{3}+16+4\right)-\left(\frac{1}{3}+1+1\right)\right) \\
& \frac{1}{3}(-3)=-1
\end{aligned} \tag{1,4}
\end{align*}
$$

$$
\begin{aligned}
& \text { 2. } f(x)=-2 e^{2 x+4} \quad[-3,-2] \\
& \frac{1}{-2+3} \int_{-3}^{-2}-2 e^{2 x+4} d x \quad \begin{array}{l}
u=2 x+4 \\
u_{-3}=-2 \\
d u=2 d x \\
d x=\frac{d u}{2}
\end{array} u_{-2}=0 \\
& \frac{0 u c k}{\frac{-2 e^{2 x+4}}{1-2}} \int_{-3}^{-2}-2 e^{u} \frac{d u}{2} \quad-\left.e^{u}\right|_{-2} ^{0}=-e^{0}--e^{-2} \\
& -e^{2 x+4} \mid-3 \\
& -e^{0}-e^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } f(x)=\csc ^{2} x \quad\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right] \text {, cosin } 0: 0 \\
& \frac{1}{3 \frac{\pi}{4}-\frac{\pi}{3}} \int_{\pi / 2}^{3 \pi / 4} \csc ^{2} x d x \\
& \frac{1}{\frac{\pi}{4}}\left(-\left.\cot x\right|_{\pi / 2} ^{3 \pi / 4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{\pi}\left(-\cot \frac{3 \pi}{4}+\cot \frac{\pi}{2}\right) \\
& \frac{4}{\pi}(-(-1)+0)=\frac{4}{\pi}
\end{aligned}
$$

THE MEAN VALUE THEOREM FOR INTEGRALS

$f(x)=\frac{1}{b-a} \cdot \int_{a}^{p} f(x) d x$

$(b-a) f(c)=\int_{a}^{b} f(x) x \int_{a}^{b} f(x) d x=f(c)(b-a)$
There is a rectangle whose area is precisely equal to the area of the region under the curve of the entire interval.

FIND THE VALUE OF C GUARANTEED BY THE MUT

$$
\begin{aligned}
& \text { 1. } f(x)=\frac{5}{x^{2}} \quad[1,4] \\
& (b-a) f(c)=\int_{a}^{b} f(x) d x \\
& (4-1) \frac{5}{c^{2}}=\int_{1}^{4} \frac{5}{x^{2}} d x^{\leftarrow} \xrightarrow{\frac{5 x}{c^{2}}}=\frac{15}{4}
\end{aligned}
$$

2. $f(x)=-x+1[-6,-5]$
$(-5--6)$

$$
\begin{aligned}
& c(-c+1)=\int_{-2}^{-5}-x+1 d x \\
& -c+1=-\frac{x^{2}}{2}+\left.x\right|_{-6} ^{-5} \\
& -c+1=\left(-\frac{-25}{2}-5\right)-(-18-6) \\
& -c+1=65 \\
& c+c=-55
\end{aligned}
$$

3. $f(x)=3 x^{\frac{1}{2}}[0,9]$

$$
\begin{aligned}
(9-0) 3 c^{1 / 2} & =\int_{0}^{9} 3 x^{1 / 2} d x \\
27 \sqrt{c} & =23 x^{3 / 2} \\
27 \sqrt{c} & =\left.2 x^{3 / 2}\right|_{0} ^{a}-2 \sqrt{0^{3}} \\
27 \sqrt{c} & =54 \\
\sqrt{c} & =2 \\
c & =4
\end{aligned}
$$

