AVERAGE FUNCTION VALUE AND MEAN VALUE THEOREM FOR INTEGRATION

Honors Calculus

Keeper 42

AVERAGE FUNCTION VALUE FOR INTEGRALS

The rectangle has the same area as the shaded region under the curve.

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

AVERAGE FUNCTION VALUE FOR INTEGRALS

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

The area under the curve f(x) for the interval of [a, b] is equal to the area of the rectangle whose width is b-a and the height is equal to the average value.

FIND THE AVERAGE VALUE OF THE FUNCTION OVER THE GIVEN INTERVAL

1.
$$f(x) = -x^2 + 2x + 1$$
 [1,4]

$$fave = \frac{1}{4-1} \int_{-1}^{4} -x^{2} + 2x + 1 dx$$

$$= \frac{1}{3} \left(-\frac{x^{3}}{3} + x^{2} + x \right)_{1}^{4}$$

$$= \frac{1}{3} \left(\left(-\frac{64}{3} + 16 + 4 \right) - \left(-\frac{1}{3} + 1 + 1 \right) \right)$$

$$= \frac{1}{3} \left(-\frac{3}{3} \right) = (-1)$$

2.
$$f(x) = -2e^{2x+4}$$

$$\frac{1}{-2+3}$$
 $\int_{-3}^{-2} -2e^{2x+4}dx$

$$\int_{-3}^{-2} -2e^{4} dx$$

$$\int_{-3}^{-2} -2e^{4} dx$$

$$-e^{4} = -e^{4} = -e^{4}$$

$$[-3, -2]$$

$$U = 2x + 4$$

$$U = 3 - 2$$

$$U = 2 + 4$$

$$U = 3 - 2$$

 $3. \quad f(x) = \csc^2 x$

$$\frac{4}{\pi} \left(-\cot \frac{3\pi}{4} + \cot \frac{\pi}{4} \right)$$

$$\frac{4}{\pi} \left(-(-1) + 0 \right)$$

THE MEAN VALUE THEOREM FOR INTEGRALS

$$\begin{cases}
b \\
c \\
c \\
c
\end{cases}$$

$$\begin{cases}
c \\
c \\
c
\end{cases}$$

$$\begin{cases}
c \\
c
\end{cases}$$

$$c \\
c
\end{cases}$$

$$\begin{cases}
c \\
c
\end{cases}$$

$$c \\
c$$

There is a rectangle whose area is precisely equal to the area of the region under the curve of the entire interval.

FIND THE VALUE OF C GUARANTEED BY THE MYT

$$1. f(x) = \frac{5}{x^2} [1,4]$$

$$(b-a) f(c) = \sum_{a=1}^{b} f(x) dx$$

$$(u-1) \frac{5}{2a} = \sum_{a=1}^{b} \frac{5}{2a} dx$$

$$\frac{15}{2a} = \frac{15}{4}$$

C-2 only bc-2 is n+1 in the int. [1,4]

2. f(x) = -x + 1 |-6, -5| $(-5--6)(-c+1) = 5^{-5} - x + 1 dx$ $-C+1 = -\frac{x^2}{2} + \frac{1}{-6}$ -C+1=(-25-5)-(-18-6)-C+1=65(4C = -5.5)

3.
$$f(x) = 3x^{\frac{1}{2}} [0, 9]$$

$$(9-0) 3c'^{2} = \int_{0}^{9} 3 \times \frac{1}{2} dx$$

$$27\sqrt{2} = 2\sqrt{9} - 2\sqrt{9}$$

$$27\sqrt{2} = 2\sqrt{9} - 2\sqrt{9}$$

$$27\sqrt{2} = 54$$

$$\sqrt{2} = 2\sqrt{9}$$