Keeper 4.2 Virtual Problems – Product and Quotient Rules

Differentiate:

1.
$$f(x) = (x^2 + 2x)e^x$$

$$2. g(x) = \sqrt{x}e^x$$

3.
$$g(x) = \frac{1+2x}{3-4x}$$

4.
$$g(x) = \frac{x^2 - 2}{2x + 1}$$

5.
$$H(u) = (u - \sqrt{u})(u + \sqrt{u})$$

6.
$$f(y) = \left(\frac{1}{y^2} - \frac{3}{y^4}\right)(y + 5y^3)$$

7.
$$y = \frac{t^2 + 2}{t^4 - 3t^2 + 1}$$

8.
$$y = e^p \left(p + p \sqrt{p} \right)$$

$$g(t) = \frac{t = \sqrt{t}}{t^{\frac{1}{3}}}$$

$$10. \quad y = \frac{e^x}{1 - e^x}$$

Find f'(x) and f''(x)

11.
$$f(x) = x^{\frac{5}{2}}e^x$$

12.
$$f(x) = \frac{2}{x-3}$$

$$13 \quad f(x) = \frac{x^2}{1+x}$$

14.
$$h(x) = f(x)g(x)$$

15.
$$h(x) = \frac{f(x)}{g(x)}$$

$$16. \quad h(x) = \frac{x^2}{f(x)}$$

17.
$$h(x) = \frac{2+g(x)}{1+f(x)}$$

- 18. If $g(x) = x \cdot f(x)$, where f(3) = 4 and f'(3) = -2, find an equation of the tangent line to the graph at g at the point where x = 3.
- 19. If f and g are the functions whose graphs are shown, let u(x) = f(x)g(x) and $w(x) = \frac{f(x)}{g(x)}$.

20. Let P(x) = F(x)G(x) and $Q(x) = \frac{F(x)}{G(x)}$, where F and G are the functions whose graphs are shown.

