VOLUMES OF REVOLUTION

Honors Calculus
Keeper 38

THE DISK METHOD
To find the volume of a solid of revolution with the disk method, use one of the following:

$$
\begin{array}{c|c}
\hline \text { Horizontal Axis of Revolution } & \text { Vertical Axis of Revolution } \\
\hline \text { Volume }=V=\pi \int_{a}^{b}[R(x)]^{2} d x & \text { Volume }=V=\pi \int_{c}^{d}[R(y)]^{2} d y \\
\hline
\end{array}
$$

1.

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=2 \sqrt{x}, y=0 \& x=9$ about the x-axis.

$$
\begin{aligned}
& V=\pi \int_{0}^{a}(2 \sqrt{x})^{2} d x \\
& V=\pi \int_{0}^{a} 4 x d x \\
& V=\pi\left(2 x^{2} \left\lvert\, \begin{array}{l}
a \\
0
\end{array}\right.\right) \\
& V=162 \pi
\end{aligned}
$$

2. Determine the volume of the solid by rotating the region bounded by $y=\sqrt{x}$ and $y=3$, about the $y-$ axis.

over $y \rightarrow d y$

$$
\begin{aligned}
& y^{2}=(\sqrt{x})^{2} \\
& x=y^{2}
\end{aligned}
$$

$$
V=\pi \int_{0}^{3}\left(y^{2}\right)^{2} d y
$$

$$
V=\pi\left(\left.\frac{y^{5}}{5}\right|_{0} ^{3}\right)
$$

$$
V=\frac{243 \pi}{5}
$$

3 Determine the volume of the solid by rotating the region bounded by $y=x^{2}-4 x+5, x=1, x=4$, and the x-axis about the x-axis.

THE WASHER METHOD

Use the washer method for solids of revolution with holes.
$R=$ outside radius
$r=\underset{\substack{\text { inside } \\ \text { radius }}}{ } \quad V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x$

$d x$

1. Determine the volume of the solid by rotating the portion of the region bounded by $y=\sqrt[3]{x}$ and $y=\frac{x}{4}$ that lies in the first quadrant about the y-axis.

$$
\begin{array}{ll}
\text { washer } & \begin{array}{ll}
\text { ash } \\
=y^{3} & y^{3}=\sqrt[3]{x^{3}}
\end{array} \\
y^{3}=x & x
\end{array}
$$

$V=\pi \int_{0}^{2}(4 y)^{2}-\left(y^{3}\right)^{2} d y$
$V=\frac{512 \pi}{21}$
2. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis.

$$
R=\sqrt{x} \quad r=x^{2}
$$

Intersection

$$
\begin{gathered}
\left(x^{2}\right)^{2}=(\sqrt{x})^{2} \\
x^{4}=x \\
x^{4}-x=0 \\
x\left(x^{3}-1\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& V=\pi \int_{0}^{1}(\sqrt{x})^{2}-\left(x^{2}\right)^{2} d x \\
& V=\frac{3 \pi}{10}
\end{aligned}
$$

