THE POWER AND SUMDIFFERENCE RULES

Honors Calculus
Keeper 22

NOTATIONS

When y is a function of x, we will denote the derivative using

$$
y^{\prime} \text { or } f^{\prime}(x) \text { or } \frac{d y}{d x}
$$

The formula $\frac{d y}{d x}$ is read as the derivative of y with respect to x.

THE POWER RULE

For any real number k,

$$
\frac{d y}{d x} x^{k}=k \cdot x^{k-1}
$$

EXAMPLES - FIND THE DERIVATIVE

1. $y=x^{5}=5 x^{5-1}$
2. $y=x^{\prime} \quad \mid x^{1-1}=1 x^{\circ} \quad y^{\prime}=1$
3. $y=x^{-4}-4 x^{-4-1}=-4 x^{-5} \quad y^{\prime}=\frac{-4}{x^{5}}$
4. $y=\sqrt[2]{x} \quad y=x^{1 / 2} \quad y^{\prime}=\frac{1}{2} x^{1 / 2} \quad y^{\prime}=\frac{1}{2} x^{-1 / 2}-\frac{2}{2 \sqrt{x}}$

THE DERIVATIVE OF A CONSTANT

The derivative of a constant function is 0 .

$$
\frac{d}{d x} c=0
$$

EXAMPLE - FIND THE DERIVATIVE

$$
\begin{aligned}
& \text { 1. } y=94 \operatorname{sime}_{a,}^{\operatorname{same}} \quad y=\frac{944 x^{\circ}}{0.94} \\
& \text { 2. } y=\pi_{\substack{4}}^{\substack{\text { This is a } \\
\text { constant }}} \quad y^{\prime}=0
\end{aligned}
$$

$$
y^{\prime}=0
$$

THE DERIVATIVE OF A CONSTANT AND A FUNCTION

The derivative of a constant times a function is the constant times the derivative of the function.

$$
\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x} f(x)
$$

EXAMPLE - FIND THE DERIVATIVE

$$
\text { 1. } f(x)=7 x^{4} \underset{7}{7} \cdot \frac{2 x^{2} x^{4}}{4 x^{3}} \quad f^{\prime}(x)=28 x^{3}
$$

$$
\text { 2. } f(x)=-9 x^{1}-9 x^{\prime \prime} \quad f^{\prime}(x)=-9
$$

$$
\text { 3. } \begin{aligned}
& f(x)=\frac{1}{5 x^{2}} \frac{1}{5} \cdot \frac{d y}{d x} x^{-2} \quad f^{\prime}(x)=\frac{-2}{5 x^{3}} \\
& f(x)=\frac{1}{5} x^{-2} y^{\prime}=\frac{-2}{5} x^{-3}
\end{aligned}
$$

DERIVHTIVE - SUM-DIFFERENT RULE

Sum: The derivative of a sum is the sum of the derivatives.

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

Different: The derivative of a difference is the difference of the derivative.

$$
\frac{\dot{d}}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

EXAMPLES - FIND THE DERIVATIVE

1. $y=3 x^{3}-12$

$$
\begin{aligned}
& y^{\prime}=3.5 x^{3-1}-0^{4} \\
& y^{\prime}=15 x^{2}
\end{aligned}
$$

EXAMPLE - FIND THE DERIVATIVE

$$
\text { 2. } \begin{aligned}
& y=24 x-\sqrt{x}+\frac{5}{x^{\prime}} \\
& y=24 x^{\prime}-x^{1 / 2}+5 x^{-1} \\
& y^{\prime}=24 x^{6}-\frac{1}{2} x^{-1 / 2}-5 x^{-2} \\
& y^{\prime}=24-\frac{1}{2 \sqrt{x}}-\frac{5}{x^{2}} \\
& \text { also }{ }^{\uparrow \frac{1}{2 x^{\prime / 2}}}
\end{aligned}
$$

EXAMPLE - FIND THE DERIVATIVE

$$
\begin{aligned}
\text { 3. } \begin{aligned}
y & =3 x^{5}+2 \sqrt[3]{x}+\frac{1}{3 x^{2}}+\sqrt{5} \\
y & =3 x^{5}+2 x^{1 / 3}+\frac{1}{3} x^{-2}+\sqrt{5} \\
y^{\prime} & =15 x^{4}+\frac{2}{3} x^{-2 / 3}-\frac{2}{3} x^{-3}+0 \\
\text { or } y^{\prime} & =15 x^{4}+\frac{2}{3 x^{2 / 3}}-\frac{2}{3 x^{3}} \\
y^{\prime} & =15 x^{4}+\frac{2}{3 \sqrt[3]{x^{3}}}-\frac{2 x^{3}}{3 x^{3}}
\end{aligned}
\end{aligned}
$$

FIND THE DERIVATIVE
4. $y=3 x\left(x^{2}-\frac{2}{x}\right)$ Multiply

$$
\begin{aligned}
& y=3 x^{3}-\frac{6 x}{x} \\
& y=3 x^{3}-6 \\
& y^{\prime}=9 x^{2}
\end{aligned}
$$

FIND THE DERIVATIVE

$$
\begin{aligned}
& \text { 5. } y=\frac{x^{3}-3 x^{2}+4}{x^{2}} \quad \begin{array}{l}
\text { simplify } \\
\text { is when dividing } \\
\text { by a monomial }
\end{array} \\
& y=\frac{x^{3}}{x^{2}}-\frac{3 x^{2}}{x^{2}}+\frac{4}{x^{2}} \\
& y=1 x^{-3}-3+4 x^{-2} \quad y^{\prime}=1-\frac{8}{x^{3}} \\
& y^{\prime}=1 x^{0}-0-8 x^{-3}
\end{aligned}
$$

FIND THE DERIVATIVES

$$
\begin{array}{lrl}
\text { 6. } y=\frac{(x+1)^{2}}{4 x} & \text { Find } y^{\prime}, y^{\prime \prime}, \text { and } y^{\prime \prime \prime} \\
y^{\prime \prime} & y^{\prime \prime \prime}=\frac{1}{2} x^{-3} \\
y=\frac{x^{2}+2 x+1}{4 x} & y^{\prime}=\frac{1}{4}-\frac{1}{4} x^{-2} & y^{\prime \prime} \\
y=\frac{x^{2}}{4 x}+\frac{2 x}{4 x}+\frac{1}{4 x} & y^{\prime \prime}=0+\frac{1}{2} x^{-3} & y^{\prime \prime \prime}=\frac{-3}{2} x^{-4} \\
y=\frac{1}{4} x+\frac{1}{2}+\frac{1}{4} x^{-1} & y^{\prime \prime}=\frac{x^{3}}{2 x^{\prime}} & y^{\prime \prime \prime}=\frac{-3}{2 x^{4}} \\
y^{\prime}=\frac{1}{4}-\frac{1}{4} x^{2} & -4 x^{-2} &
\end{array}
$$

$$
\begin{align*}
& \text { 7. } g(t)=\frac{t^{3}-4 t^{2}+6}{4 t^{t}} \quad \text { Find } \frac{d g}{d t} \text { at }(4,3) \\
& g(t)=\frac{t^{3}-\frac{4 t^{2}}{t^{1 / 2}} \frac{t}{t^{1 / 2}}}{} \\
& g(t)=t^{5 / 2}-4 t^{3 / 2} \cdot 6 t^{-1 / 2} \\
& g^{\prime}(t)=\frac{5}{2} t^{3 / 2}-6 t^{1 / 2}-3 t^{-3 / 2} \\
& g^{\prime}(t)=\frac{5 \sqrt{t^{3}}}{2}-6 \sqrt{t}-\frac{3}{\sqrt{t^{3}}} \tag{61}\\
& g^{\prime}(4)=\frac{5 \sqrt{4^{3}}}{2}-6 \sqrt{4}-\frac{3}{20}-12-\frac{3}{8} \sqrt{4^{3}}
\end{align*}
$$

