CHARACTERISTICS OF POLYNOMIAL FUNCTIONS

Keeper 15
GSE Honors Algebra II

DOMAIN \& RANGE

*Domain $=$ all of the x-values that can go INTO the function. [How wide does the graph spread?]
*Range $=$ all of the y-values you can get OUT of the $(-\infty, \infty)$ function. Use the y-coordinate from the absolute minimum/maximum value to help you determine the range. (lowest, highest)
*If the graph goes above the absolute minimum/ maximum value, then the range will be $y \geq y$ coordinate.
*If the graph goes below the minimum/maximum value, then the range will be $y \leq y$-coordinate.

INTERCEPTS Ex $y=x^{2}-5 x+4$
$0=x^{2}-5 x+4^{* x}$-intercept $=$ the point $(x, 0)$. You can find the $0=(x-1)(x-4)$ value of x by plugging in zero for y and solving.
$x=1 \quad x=4$ The x-coordinate from the x-intercept is the REAL
$(1,0) \not f(4,0)$ ZERO of the polynomial.

* y-intercept - the point ($0, y$). You can find the value of y by plugging in zero for x and solving.

$$
\begin{aligned}
& \text { t }(0, y) \text {. You can find the value } A \text { always t } \\
& \text { in zero for } x \text { and solving. } \\
& y=(0)^{2}-5(0) 4 \text { the cont art } \\
& y=4
\end{aligned}
$$

$$
y=4(0,4)
$$

INTERVALS OF INCREASE/DECREASE

*Intervals of Increase - the x-values of the graph where it goes UP from left to right.
*Intervals of Decrease - the x-values f the graph where it goes DOWN from left to right.
Remember to join multiple intervals with a "u."

maximuMS AND minimuMs

Relative Maximum/Minimum
*Relative Maximum - the highest point on a turn. Local Max
*Relative Minimum - the lowest point on a turn. valley

Absolute Maximum/Minimum

*Absolute Maximum - the highest point of all the ${ }^{2}$ points on the graph.

*Absolute Minimum - the lowest point of all the points on the graph.

EVEN/ODD FUNCTIONS

Even Functions
*have symmetry about the y-axis.

Eq: all exponents including constant are even
[If you folded the graph along the y-axis, the left side and right side would overlap.]

Odd Function
Eq: all exponents are odd
*have symmetry about the origin.
[If you folded the graph along the $x \& y$-axis, the graph would overlap itself.]

END BEHAVIOR:

Describes what $f(x)$ does if you could follow the graph FOREVER!

$$
\begin{aligned}
& \text { as } \mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow- \\
& \text { as } \mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow
\end{aligned}
$$

*If the arrow points up, use ∞.
*If the arrow points down, use $-\infty$.
 GIVEN BY THE GRAPH.

Domain
Range
X-intercept
Zeros
Y-intercept
Intervals of Increase
Intervals of Decrease
Relative Maximum
Relative Minimum
Absolute Maximum
Absolute Minimum
Even/Odd
End Behavior

EXAMPLE \# 3: DESCRIBE THE CHARACTERISTICS FOR THE FUNCTION

 GIVEN BY THE GRAPH.| Domain |
| :--- |
| Range |
| X-intercept |
| Zeros |
| Y-intercept |
| Intervals of Increase |
| Intervals of Decrease |
| Relative Maximum |
| Relative Minimum |
| Absolute Maximum |
| Absolute Minimum |
| Even/Odd |
| End Behavior |

Domain
Range
X-intercept
Zeros
Y-intercept
Intervals of Increase
Intervals of Decrease
Relative Maximum
Relative Minimum
Absolute Maximum
Absolute Minimum
Even/Odd
End Behavior

$f(x)=x^{4}+x^{3}-11 x^{2}-9 x+18$

- Use your calculator to graph.
- Then state the following:
- Domain
- Range
- Zeros
- Relative Max
- Relative Min
- Intervals of Increase
- Intervals of Decrease

