

GSE Honors Algebra II

DOMAIN & RANGE

*Domain = all of the x-values that can go INTO the for all polynomial for all polynomial for all polynomial for all polynomial the domain is the domain is the domain is function. Use the y-coordinate from the absolute minimum/maximum value to help you determine the range. (lowest, highest)

*If the graph goes above the absolute minimum/ maximum value, then the range will be y ≥ ycoordinate.

*If the graph goes below the minimum/maximum value, then the range will be y ≤ y-coordinate.

INTERCEPTS E_X : $y = x^2 - 5x + 4$

*x-intercept = the point (x, 0). You can find the value of x by plugging in zero for y and solving. $(1,0) \neq (4,0)$ ZERO of the polynomial.

*y-intercept - the point (0, y). You can find the value a way of y by plugging in zero for x and solving. $y = (0)^2 - 5(0) + 4$ y = 4 y = 4 y = 4

INTERVALS OF INCREASE/DECREASE

*Intervals of Increase - the x-values of the graph where it goes UP from left to right.

*Intervals of Decrease - the x-values of the graph where it goes DOWN from left to right.

Remember to join multiple intervals with a "u."

MAXIMUMS AND MINIMUMS

Relative Maximum/Minimum

*Relative Maximum - the highest point on a turn.

Pel Max

Min.

Rel Max

no anax

Absolute Maximum/Minimum

*Absolute Maximum - the highest point of all the the points on the graph.

*Absolute Minimum - the lowest point of all the points on the graph.

EVEN/ODD FUNCTIONS

Even Functions

Eq. all exponent cincluding constant ore even

*have symmetry about the y-axis.

[If you folded the graph along the y-axis, the left side and right side would overlap.]

Odd Function

Eq all exponents are odd

*have symmetry about the origin. [If you folded the graph along the x & y-axis, the graph would overlap itself.]

END BEHAVIOR:

Describes what f(x) does if you could follow the graph FOREVER!

as
$$x \to \infty$$
, $f(x) \to$ _____
as $x \to -\infty$, $f(x) \to$ _____

*If the arrow points up, use ∞.
*If the arrow points down, use - ∞.

EXAMPLE # 2: DESCRIBE THE CHARACTERISTICS FOR THE FUNCTION GIVEN BY THE GRAPH.

Domain

Range

X-intercept

Zeros

Y-intercept

Intervals of Increase

Intervals of Decrease

Relative Maximum

Relative Minimum

Absolute Maximum

Absolute Minimum

Even/Odd

End Behavior

EXAMPLE # 3: DESCRIBE THE CHARACTERISTICS FOR THE FUNCTION GIVEN BY THE GRAPH.

EXAMPLE # 4: DESCRIBE THE CHARACTERISTICS FOR THE FUNCTION GIVEN BY THE GRAPH.

$f(x) = x^4 + x^3 - 11x^2 - 9x + 18$

Use your calculator to graph.

- Then state the following:
 - Domain
 - Range
 - Zeros
 - Relative Max
 - Relative Min
 - Intervals of Increase
 - Intervals of Decrease

