DEFINITION OF A DERIVATIVE

Keeper 20
Honors Calculus

Label the following on the picture below:
$f(x), f(x+h), h, f(x+h)-f(x)$ and a segment whose slope represents $\frac{f(x+h)-f(x)}{h}$ and $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
m_{\sec }=\frac{f(x+h)-f(x)}{x+h-x}
$$

SLOPE OF THE SECANT LINE

$$
m_{s e c}=\frac{f(x+h)-f(x)}{h}
$$

This formula represents the AVERAGE rate of change

SLOPE OF THE TANGENT LINE

$$
m_{\tan }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This formula represents the INSTANTANEOUS rate of change

COMPARE AND CONYRIMS THE AVERAGE RATE OF CHANGE WITH THE INSTANTANEOUS RATE OF CHANGE (DERIVATIVE).

Similarities
Both are rates of change Both are slopes

$$
\frac{f(x+h)-f(x)}{h}
$$

Differences
IROC is a limit; AROC isn't
One is an aug, rate t the other is instantaneous
AROC uses a pts on graph

+ IROC uses only ipt

DERIVATIVE

-Slope of a tangent line
-Rate of change at l point
-Instantaneous rate of change
-Denoted by $y^{\prime}, \mathrm{f}^{\prime}(\mathrm{x})$, or $\frac{d y}{d x}$ "deriv. of $y_{\text {with }}$ respect to x "

DEFINITION OF A DERIVATIVE

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

FIND THE DERIVATIVE USING THE DEFINITION $\lim _{n \rightarrow 0} \frac{f(x+n)-(x)}{n}$

$$
\begin{aligned}
& \text { 1. } f(x)=\frac{-3 x+2-f(x)}{f^{\prime}(x)} \begin{aligned}
& \lim _{h \rightarrow 0} \frac{-3(x+h)+2-(-3 x+2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-3 x-3 h+2+3 x-2}{h}
\end{aligned} \lim _{h \rightarrow 0} \frac{-3 h}{h}
\end{aligned}
$$

FIND THE DERIVATIVE

$$
(x+h)^{2}=\left(\sqrt{1+h}(x+h) x^{2}+2 \times h+h^{2}\right.
$$

2. $y=3 x^{2}-2 x+4$

$$
\begin{aligned}
& \text { 2. } y=3 x^{2}-2 x+4 \\
& y^{\prime}=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-2(x+h)^{2}+4-\left(3 x^{2}-2 x+4\right)}{h} \\
& y^{\prime}=\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-2 x-2 h+4-3 x^{2}+2 x-4}{h} \\
& y^{\prime}=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-2 x-2 h+4-3 x^{2}+2 x-44}{h} \\
& y^{\prime}=\lim _{h \rightarrow 0} \frac{\frac{k(6 x+3 h-2)}{h} \rightarrow \lim _{h \rightarrow 0} 6 x+3(0)-2}{\prime}
\end{aligned}
$$

$$
y^{\prime}=6 x-2
$$

FIND THE DERIVATIVE

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{x+x}{(x+h+1)(x+1)}+\frac{-x-h-x}{(x+h+1)(x+1)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{\frac{(x+h+1)(x+1)}{h}} \\
& \lim _{h \rightarrow 0} \frac{-k}{(x+h+1)(x+1)} \cdot \frac{1}{\frac{k}{x} \rightarrow \frac{d y}{d x}}=\lim _{h \rightarrow 0} \frac{-1}{(x+0+1)(x+1)} \\
& \frac{d y}{d x}=\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

FIND THE DERIVATIVE
4. $f(x)=3 \sqrt{x-2}$ multiply by

$$
\begin{aligned}
& \text { 4. } f(x)=3 \sqrt{x-2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(3 \sqrt{x+h-2}-3 \sqrt{x-2})(3 \sqrt{x+h-2}+3 \sqrt{x-2})}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{9(x+h-2)-9(x-2)}{h(3 \sqrt{x+h-2}+3 \sqrt{x-2})}=\lim _{h \rightarrow 0} \frac{9 x+9 k-18 \sqrt{x-2}++8}{h(3 \sqrt{x+h-2+3 \sqrt{x-2})}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{9}{3 \sqrt{x+0-2}+3 \sqrt{x-2} \rightarrow f^{\prime}(x)=\frac{9}{3 \sqrt{x-2}+3 \sqrt{x-2}} \frac{3}{2 \sqrt{x-2}}}
\end{aligned}
$$

