Meaning of Integration

E.Q. What is an integral? How can we approximate area under a curve?

Day	Unit Dates	Topics	Assignments
1	Friday, October 23rd	Keeper 6.1-Antiderivatives	Antiderivatives (packet p. 1-2)
2	Monday, October $26^{\text {th }}$	Keeper 6.2 - Riemann Sums	Skills Check 6.1 A (Forms) Riemann Sums (packet p. 3-5)
3	Tuesday, October $27^{\text {th }}$	Keeper 6.3-Riemann Sums to an Integral	Skills Check 6.1 B (Forms) Riemann Sums to an Integral (packet p. 6-7)
4	Wednesday, October $28^{\text {th }}$	Optional Q \& A Session at 10am Review Keeper 6.1-6.2 Antiderivatives and Riemann Sums	Take Home Skills Check 6.2 (AP Classroom) Get Caught up on all Keeper Notes and Homework
5	Thursday, October 29th	Keeper 6.4 - Fundamental Theorem of Calculus Part 2	Skills Check 6.1 C (Forms) The FTC Part 2 (packet p. 8 -9)
6	Friday, October 30th	Keeper 6.4 - Fundamental Theorem of Calculus Part 1	Skills Check 6.4 - FTC Part 2 (AP Classroom) The Fundamental Theorem of Calculus Part 1 (packet p. 10 13)
7	Monday, November 2nd	Keeper 6.5 - Total or Net Change	Skills Check 6.4 - FTC Part 1 (AP Classroom) Definite Integrals and Rates of Change (packet p. 14)
8	Wednesday, November $4^{\text {th }}$	Optional Q \& A Session at 10am Unit 6 Additional Review	Complete Homework Packet and Catch up on all Keeper Notes Study for Unit 6 Test Homework Packet Due in CTLS
9	Thursday, November $5^{\text {th }}$	Test - The Meaning of Integration	Good Luck ())

Antiderivatives

Find the general antiderivative of each function.

1. $f(x)=6 x^{2}-8 x+3$
2. $f(x)=\sqrt{x}+\sqrt[3]{x}$
3. $f(x)=\frac{x^{3}+2 x^{2}}{\sqrt{x}}$
4. $f(x)=3 \cos x-4 \sin x$
5. $f(x)=\frac{x^{2}+x+1}{x}$
6. $f(x)=6 x^{2}-7 \sec ^{2} x$

Find $f(x)$
11. $f^{\prime}(x)=1-6 x ; f(0)=8$
12. $f^{\prime}(x)=3 \sqrt{x}-\frac{1}{\sqrt{x}} ; f(1)=2$
13. $f^{\prime}(x)=3 \cos x+5 \sin x ; f(0)=4$
15. $f^{\prime \prime}(x)=x^{2}+3 \cos x ; f(0)=2, f^{\prime}(0)=3$
14. $f^{\prime \prime}(x)=x ; f(0)=-3, f^{\prime}(0)=2$
16. $f^{\prime \prime}(x)=12 x^{2}-6 x+2 ; f(0)=1, f^{\prime}(2)=11$

Riemann Sums

1. The graph of a function f is given. Estimate $\int_{0}^{10} f(x) d x$ using ten subintervals with
a. Right Endpoints

b. Left Endpoints

c. Midpoints

2. The graph of g is shown. Estimate $\int_{-2}^{4} g(x) d x$ with six subintervals using
a. Right Endpoints

b. Left Endpoints

c. Midpoints

3. The table gives the values of a function obtained from an experiment. Use them to estimate $\int_{3}^{9} f(x) d x$ using three equal subintervals with
a. Right Endpoints

x	3	4	5	6	7	8	9
$f(x)$	-3.4	-2.1	-.6	.3	.9	1.4	1.8

b. Left Endpoints

x	3	4	5	6	7	8	9
$f(x)$	-3.4	-2.1	-.6	.3	.9	1.4	1.8

c. Midpoints

x	3	4	5	6	7	8	9
$f(x)$	-3.4	-2.1	-.6	.3	.9	1.4	1.8

4. The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
a. $\int_{0}^{2} f(x) d x$
b. $\int_{0}^{5} f(x) d x$
c. $\int_{5}^{7} f(x) d x$
d. $\int_{0}^{9} f(x) d x$

5. The graph of g consists of two straight lines and a semi-circle. Use it to evaluate each integral.
a. $\int_{0}^{2} g(x) d x$
b. $\int_{2}^{6} g(x) d x$

C. $\int_{0}^{7} g(x) d x$

Evaluate the integral by interpreting it in terms of areas.
6. $\int_{0}^{9}\left(\frac{1}{3} x-2\right) d x$

7. $\int_{0}^{10}|x-5| d x$

8. If $\int_{1}^{5} f(x) d x=12$ and $\int_{4}^{5} f(x) d x=$ 3.6 , find $\int_{1}^{4} f(x) d x$
10.

Find $\int_{0}^{5} f(x)$ if $f(x)=\left\{\begin{array}{l}3 \text { for } x<3 \\ x \text { for } x \geq 3\end{array}\right.$

12. Each of the regions A, B, and C bounded by the graph of f and the x-axis has the area 3 . Find the value of $\int_{-4}^{2}[f(x)+2 x+5] d x$

9. If $\int_{0}^{9} f(x) d x=37$ and $\int_{0}^{9} g(x) d x=$ 16 , find $\int_{0}^{9}[2 f(x)+3 g(x)] d x$
11. For the function f whose graph is shown, list the following quantities in increasing order from smallest to largest, and explain your reasoning.

a. $\int_{0}^{8} f(x) d x$
b. $\int_{0}^{3} f(x) d x$
C. $\int_{3}^{8} f(x) d x$
d. $\int_{4}^{8} f(x) d x$
e. $f^{\prime}(1)$

Riemann Sums to an Integral

Each expression below is a right Riemann Sum approximation for an integral.
In each problem, state what integral the sum is approximating.

1. $\frac{1}{4}\left[\sin \left(\frac{9}{4}\right)+\sin \left(\frac{10}{4}\right)+\sin \left(\frac{11}{4}\right)+\sin (3)\right]$
2. $\frac{1}{5}\left[\ln \left(\frac{11}{5}\right)+\ln \left(\frac{12}{5}\right)+\ln \left(\frac{13}{5}\right)+\ln \left(\frac{14}{5}\right)+\ln (3)\right]$
3. $\frac{1}{8}\left[\frac{1}{\left(1 \frac{1}{8}\right)^{2}}+\frac{1}{\left(1 \frac{1}{4}\right)^{2}}+\frac{1}{\left(1 \frac{3}{8}\right)^{2}}+\frac{1}{\left(1 \frac{1}{2}\right)^{2}}+\frac{1}{\left(1 \frac{5}{8}\right)^{2}}+\frac{1}{\left(1 \frac{3}{4}\right)^{2}}+\frac{1}{\left(1 \frac{7}{8}\right)^{2}}+\frac{1}{2^{2}}\right]$
4. $\frac{1}{3}\left[\sqrt[3]{\frac{4}{3}}+\sqrt[3]{\frac{5}{3}}+\sqrt[3]{2}\right]$
5. $\frac{1}{2}\left[3(3.5)^{2}+3(4)^{2}+3(4.5)^{2}+3(5)^{2}\right]$

The following is a left Riemann Sum approximation for some integral. What integral is it approximating?
6. $\frac{1}{4}\left[\frac{1}{2(1)}+\frac{1}{2(1.25)}+\frac{1}{2(1.5)}+\frac{1}{2(1.75)}\right]$
1.
$\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{i}{N^{2}}$
2.
$\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \frac{j^{3}}{N^{4}}$
3.
$\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{i^{2}-i+1}{N^{3}}$
4. $\lim _{N \rightarrow \infty} \sum_{i=1}^{N}\left(\frac{i^{3}}{N^{4}}-\frac{20}{N}\right)$
6. $\lim _{N \rightarrow \infty} \frac{4}{N} \sum_{k=1}^{N}\left(3+\frac{4 k}{N}\right)$
7. $\lim _{N \rightarrow \infty} \frac{\pi}{N} \sum_{j=0}^{N-1} \sin \left(\frac{\pi}{2}+\frac{\pi j}{N}\right)$
8. $\lim _{N \rightarrow \infty} \frac{4}{N} \sum_{k=1}^{N} \frac{1}{\left(3+\frac{4 k}{N}\right)^{2}}$
9. $\lim _{N \rightarrow \infty} \frac{1^{k}+2^{k}+\cdots+N^{k}}{N^{k+1}} \quad(k>0)$

Fundamental Theorem of Calculus - Part 2

1. $\int_{-1}^{2}\left(x^{3}-2 x\right) d x$
2. $\int_{1}^{4}\left(5-2 t+3 t^{2}\right) d t$
3. $\int_{1}^{9} \sqrt{x} d x$
4. $\int_{\frac{\pi}{6}}^{\pi} \sin \theta d \theta$
5. $\int_{0}^{1}(u+2)(u-3) d u$
6. $\int_{0}^{4}(4-t) \sqrt{t} d t$
7. $\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x$
8. $\int_{0}^{\frac{\pi}{4}} \sec ^{2} t d t$
9. $\int_{0}^{\frac{\pi}{4}} \sec \theta \tan \theta d \theta$
10. $\int_{1}^{2}(1+2 y)^{2} d y$
11. $\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x$
12. $\int_{1}^{2} \frac{v^{3}+3 v^{6}}{v^{4}} d v$
13. $\int_{0}^{1}\left(x^{e}+e^{x}\right) d x$
14. $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{8}{1+x^{2}} d x$
15. $\int_{-1}^{1} e^{u+1} d u$
16. $\int_{0}^{\pi} f(x) d x$ were $f(x)=\left\{\begin{array}{l}\sin x, 0 \leq x<\frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x<\pi\end{array}\right.$

The Fundamental Theorem of Calculus Part 1

1. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.

a. Evaluate
b. Estimate $g(7)$
$x=0$
$x=1$
$x=2$
$x=3$
$x=4$
$x=5$
$x=6$
c. Where does g have a maximum value? Where does it have a minimum value?
2. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.

a. Evaluate
$g(0)$
$g(1)$
$g(2)$
$g(3)$
$g(6)$
c. Where does g have a maximum value?
d. Sketch a graph of g.
3. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.

a. Evaluate $g(0)$
$g(6)$
b. Evaluate

$$
\begin{array}{ll}
x=1 & x=2 \\
x=3 & x=4 \\
x=5 &
\end{array}
$$

c. On what interval is g increasing?
d. Where does g have a maximum value?
e. Sketch a rough graph of g.

Use the $1^{\text {st }}$ Fundamental Theorem of Calculus to find the derivative of the functions.
4. $g(x)=\int_{1}^{x} \frac{1}{t^{3}+1} d t$
5. $g(x)=\int_{3}^{x} e^{t^{2}-t} d t$
6. $g(s)=\int_{5}^{s}\left(t-t^{2}\right)^{8} d t$
7. $g(r)=\int_{0}^{r} \sqrt{x^{2}+4} d x$
8. $G(x)=\int_{x}^{1} \cos \sqrt{t} d t$
10. $h(x)=\int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4}+1} d z$
12. $y=\int_{0}^{x^{4}} \cos ^{2} \theta d \theta$
14. $y=\int_{\sin x}^{1} \sqrt{\left(1+t^{2}\right)} d t$
9. $h(x)=\int_{1}^{e^{x}} \ln t d t$
11. $y=\int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t$
13. $y=\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u$
15. $F(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$
16. If $f(x)=\int_{0}^{x}\left(1-t^{2}\right) e^{t^{2}} d t$, on what interval is f increasing?
18.

If $f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t$ and $g(y)=$ $\int_{3}^{y} f(x) d x$, find $g^{\prime \prime}\left(\frac{\pi}{6}\right)$
17. On what interval is the curve $y=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t$ concave down?
19. If $f(1)=12, f^{\prime}$ is continuous, and $\int_{1}^{4} f^{\prime}(x) d x=17$, what is the value of $f(4) ?$
20. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.
a. At what values of x does the local maximum and minimum of g occur?
b. Where does g attain its absolute maximum value?
c. On what intervals is g concave downward?

d. Sketch the graph of g.

Definite Integrals and Rate of Change

1. If $w^{\prime}(t)$ is the rate of growth of a child in pounds per year, what does $\int_{5}^{10} w^{\prime}(t) d t$ represent?
2. A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?
3. Water flows from the bottom of a storage tank at a rate of $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$. Find the amount of water that flows from the tank during the first 10 minutes.
4. If oil leaks from a tank at a rate of $r(t)$ gallons per minute at time t, what does $\int_{0}^{120} r(t) d t$ represent?
5. The linear density of a rod of length 4 m is given by $p(x)=9+2 \sqrt{x}$ measured in kilograms per meter, where x is measured in meters from one end of the rod. Find the total mass of the rod.
6. The velocity of a car was read from its speedometer at 10 -second intervals and recorded in the table. Use the Midpoint Rule to estimate the distance traveled by the car.

$t(\mathrm{~s})$	$\mathrm{v}(\mathrm{mi} / \mathrm{h})$	$\mathrm{t}(\mathrm{s})$	$\mathrm{v}(\mathrm{mi} / \mathrm{h})$
0	0	60	56
10	38	70	53
20	52	80	50
30	58	90	47
40	55	100	45
50	51		

Practice Test - Meaning of Integration

Calculator not allowed on this section.

1. What is the meaning of $\int_{3}^{7} m(t) d t$, if $m(\mathrm{t})$ is the rate of traffic flow (number of cars per hour passing an observation point along a highway), and t is measured in hours from
8:00 am on December 20, 2005?
2. A particle moves along a straight line with acceleration $a(t)=5+4 t-6 t^{2}$. The velocity at $t=1$ second is $3 \mathrm{~m} / \mathrm{sec}$. Its position at time $t=0$ is 10 meters. Find both the velocity function and the position function.
3. If $\int_{3}^{7} f(x) d x=11$ and $\int_{3}^{7} g(x)=-5$ and $\int_{5}^{7} f(x) d x=4$, find the following. (2 points each)
a) $\int_{3}^{7}[2 f(x)+3 g(x)]=$
b) $\int_{7}^{3} 4 g(x) d x=$
c) $\int_{5}^{7}(f(x)+2) d x=$
d) $\int_{3}^{5} f(x) d x$
4. The graph of the velocity (in $\mathrm{m} / \mathrm{min}$) of a bicycle as a function of time t (in min) is graphed below. The graph consists of line segments and a quarter of a circle. Use the graph of velocity to determine:
$\mathrm{v}(\mathrm{t})$

a. the displacement of the bicycle during the first 12 minutes.
b. the total distance traveled by the bicycle during the first 12 minutes.
5. Let $g(x)=\int_{-1}^{x} f(t) d t$, where f is the function whose graph is shown below:

a) Find $g(0)$ and $g(-3)$.
b) Find $g^{\prime}(0)$ and $g^{\prime}(-3)$.
c) Find $\mathrm{g}^{\prime \prime}(0)$ and $\mathrm{g}{ }^{\prime \prime}(-3)$.
c) At what value(s) of x does g attain a local max and/or local min?
d) At what value(s) of x does g attain an absolute max and/or an absolute min?
6. Evaluate the definite integrals.
a. $\int_{2}^{e^{2}} \frac{3}{t} d t$
b. $\int_{0}^{\frac{\pi}{3}} \sec x \cdot \tan x d x$
c. $\int_{0}^{5}|4-x| d x$
d. $\int_{8}^{27} \frac{4}{\sqrt[3]{x}} d x$
7. Use the Fundamental Theorem of Calculus to simplify:
a. if $f(x)=\int_{1}^{x^{3}} \frac{1}{1+t^{2}} d t$

Find $F(1)=$

$$
\begin{aligned}
& F^{\prime}(x)= \\
& F^{\prime}(1)=
\end{aligned}
$$

9. Simplify.
a. $\frac{d}{d x} \int_{3 x^{2}}^{4} \sin \left(t^{2}\right) d t$
b. $\quad F(x)=\int_{x^{2}}^{\sec x} \sqrt{1+t} d t$, find $F^{\prime}(x)$
c. $\int_{1}^{x} \frac{1}{1+t^{2}} d t$
10. Express the limit as a definite integral on the given interval and evaluate.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[6\left(x_{i}^{*}\right)^{2}-3 x_{i}^{*}\right] \Delta x \tag{1,2}
\end{equation*}
$$

Integral:

Value of Integral:

11. Express the limit $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n} \sin \left(\frac{k}{n}\right)$ as an integral.

Practice Test - Meaning of Integration

Calculator allowed
12. The penguin population on an island is modeled by a differentiable function P of time t, where $\mathrm{P}(\mathrm{t})$ is the number of penguins and t is measured in years, for $0 \leq t \leq 40$. There are 100,000 penguins on the island at time $t=0$. The birth rate for the penguins on the island is modeled by $B(t)=1000 e^{0.06 t}$ penguins per year. To the nearest whole number, find how many penguins are on the island after 40 years.
13. Use your calculator to find the value of the integral.

$$
\int_{4}^{10}(\ln (x)+5 \sin (x)-1) d x
$$

14. The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a differentiable and strictly increasing function R of time t. A table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown below. Approximate the value of $\int_{0}^{90} R(t) d t$ using a trapezoidal approximation with the five subintervals indicated by the data in the table.

t (minutes)	$\mathrm{R}(\mathrm{t})$ (gal per min)
0	15
10	25
40	50
50	55
70	65
90	70

