Calculus : Derivative Applications
Group Work - Curve Sketching

Name \qquad
Date \qquad Period \qquad
Draw a possible graph of $\boldsymbol{f} \boldsymbol{(x)}$ given the information below.

1. a. $f(x)$ is continuous
$f(x)$
$f(x)$
b. $f^{\prime}(2)=0$
c. $f^{\prime}(x)>0$, if $x<2$
d. $f^{\prime}(x)<0$, if $x>2$
e. $f^{\prime \prime}(x)<0$ from $(-\infty, \infty)$
2. a. $f(x)$ is continuous
b. $f^{\prime}(x)$ does not exist at $x=1$
c. $f^{\prime \prime}(x)<0$ when $x<1$
d. $f "(x)>0$ when $x>1$

Draw two possibilities.

$$
f(x)
$$

$f(x)$

$$
f(x)
$$

3. a. $f(x)$ is continuous
b. $f^{\prime}(x)<0$ when $x<1$
c. $f^{\prime}(x)>0$ when $x>1$
d. $f^{\prime \prime}(x)>0$ when $x<1$
e. $f^{\prime \prime}(x)<0$ when $x>1$

$$
f(x)
$$

$$
f(x)
$$

f. $f^{\prime}(x)$ does not exist at $x=1$
g. $f "(x)$ does not exist at $x=1$

Calculus : Derivative Applications
Group Work - Curve Sketching
4. a. $f(x)$ is continuous
b. $f^{\prime}(x)<0$ on $(-1,4)$
c. $f^{\prime}(x)>0$ on $(-\infty,-1) \cup(4, \infty)$
d. $f^{\prime}(x)=0$ when $x=-1, x=4$
e. $f^{\prime \prime}<0$ on $(-\infty, 1.5)$
f. $f^{\prime \prime}>0$ on $(1.5, \infty)$
5. a. $f(x)$ is continuous
b. $f^{\prime}(x)>0$ everywhere
c. $f^{\prime}(x)=0$ when $x=-2, x=3$
d. $f^{\prime \prime}(x)<0$ on $(-\infty,-2) \cup(1,3)$
e. $f^{\prime \prime}(x)>0$ on $(-2,1) \cup(3, \infty)$
$f(x)$
$f(x)$

6.
a. $f(x)$ is continuous
b. $f^{\prime}(x)>0$ when $x<2$
c. $f^{\prime}(x)<0$ when $x>2$
d. $f^{\prime}(x)$ does not exist at $x=2$
e. $f^{\prime \prime}(x)>0$ when $x<2$
$f(x)$
$f(x)$
f. $f^{\prime \prime}(x)<0$ when $x>2$

\qquad
\qquad
\qquad
7. a. $f(x)$ is not continuous at $x=3 \quad f(x)$
b. $f^{\prime}(x)>0$ when $x<3$
c. $f^{\prime}(x)<0$ when $x>3$
d. $f^{\prime \prime}(x)>0$ when $x<3$
e. $f^{\prime \prime}(x)>0$ when $x>3$

$f(x)$
f. $f^{\prime}(x)$ does not exist at $x=3$
8.
a. $f(x)$ is not continuous at $x=0 \quad f(x)$
b. $f^{\prime}(x)$ does not exist at $x=0$
c. $f^{\prime}(x)>0$ when $x<0$
d. $f^{\prime}(x)>0$ when $x>0$
e. $f^{\prime \prime}(x)$ does not exist at $x=0$

f. $f "(x)>0$ when $x<0$
g. $f^{\prime \prime}(x)<0$ when $x>0$
9.
a. $f(x)$ is continuous
$f(x)$
$f(x)$
b. $f(3)=0, f(1)=-2$,
$f(0)=-1, f(-1)=0$
c. $f^{\prime}(x)>0$ when $1<x<3$
d. $f^{\prime}(x)<0$ when $x>3$ or $x<1$

e. $f^{\prime \prime}(x)>0$ when $x<0$ or $1<x<3$
f. $f "(x)<0$ when $0<x<1$ or $x>3$

