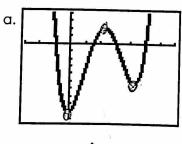
Degree

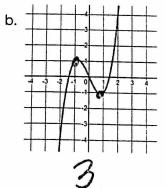
The degree, n, of a polynomial function, can tell us a lot of helpful information:

- n = the maximum number of zeros, or x-intercepts
- n = the maximum number of directions in which the graph will travel
 - (n-1) = the maximum number of turns/extrema (minimums/maximums)

 End Behavior: "Valleys" "Mountains"
 - - o if the degree is **EVEN**, the ends of the graph will go in **Same** directions
 - o if the degree is <u>Ddd</u>, the ends of the graph will go in <u>opposite</u> directions

Maximum and Minimum Values


These are the \checkmark - coordinates of the turning points of the graph.


- Absolute maximum is the <u>highest</u> point on the graph
- Absolute minimum is the lowest point on the graph
- Relative maximum is found at the <u>top</u> of a peak, and is higher than any point nearby.
- Relative minimum is found at the bottom of a valley, and is lower than any point nearby.

Maximum and minimum values are called <u>extrema</u>

Ex 1: Determine the least possible degree of the function shown.

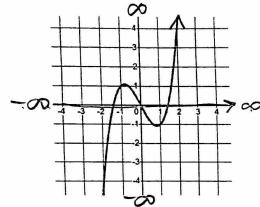
To find the least possible degree, count the number of extrema, and add 1.

Ex 2: Determine the maximum number of extrema.

To find the maximum number of extrema, take the degree and <u>SUBTRACT</u> 1.

$$a. f(x) = 2x^3 - 3x^2 + 5$$

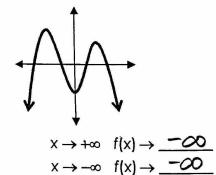
b.
$$y = -3x^{2} + 2x^{2} - 1$$

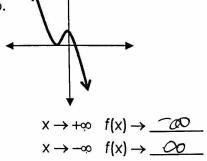

c.
$$g(x) = x^{5} + 3x^{4} - x^{3} - 3x^{2}$$

9

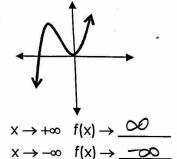
End Behavior

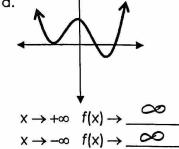
Describes whether the y-values of a function increase or decrease as the x-values approach positive infinity on the right, and as the x-values approach negative infinity on the left.


Think:	Say:	Write:
As x goes to the RIGHT	"As x approaches infinity,	As $x \rightarrow \infty$, $f(x) \rightarrow $
(toward positive infinity),	f of x approaches"	00 or -00
does the end of the graph	oo or	up down
go up or down?	8	
Think:	Say:	Write:
As x goes to the LEFT	"As x approaches negative	As $x \rightarrow -\infty$, $f(x) \rightarrow $
(toward negative infinity),	infinity, f of x approaches	20 or - 20
does the end of the graph		up down
go up or down?	00 or -00	


$$\begin{array}{c} \text{(right)} \\ x \to +\infty \\ \text{f(x)} \to \underline{\hspace{1cm}} \infty \\ \text{(up)} \\ x \to -\infty \\ \text{(left)} \end{array}$$

Ex 3: Describe the end behavior of each graph.


a.


b.

c.

d.

End behavior can also be determined by looking at the leading coefficient and degree of the function.

Leading Coefficient tells us what happens on the RIGHT:

POSITIVE ________________ NEGATIVE _~ Degree tells us what happens on the LEFT: (same as the right, or opposite?) EVEN Same ODD

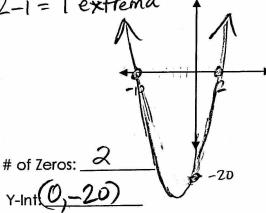
POSITIVE Leading Coefficient	ODD Degree	EVEN Degree
NEGATIVE Leading Coefficient	N	S

Ex 4: Determine the end behavior of the function.

$$X \to +\infty$$
 $f(X) \to -\infty$
 $X \to -\infty$ $f(X) \to -\infty$

a. $f(x) = \bigcirc 2x^{3} + x - 4$ b. $f(x) = \Rightarrow x^{4} + 2x^{3} - x^{2} - 1$ c. $f(x) = 6x^{5} - 4x^{3} - 9$ LC - (right/up)

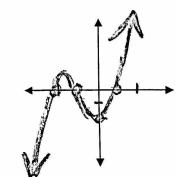
Degree odd (opposite) $x \to +\infty$ $f(x) \to -\infty$ $x \to +\infty$ $f(x) \to -\infty$ $x \to +\infty$ $f(x) \to -\infty$ $x \to -\infty$ $f(x) \to -\infty$ c. $f(x) = 6x^{5} - 4x^{3} - 9$


$$x \to +\infty$$
 $f(x) \to \underline{\hspace{1cm}}$
 $x \to -\infty$ $f(x) \to \underline{\hspace{1cm}}$

Putting it all together!

Ex 5: Given the polynomial and zeros, sketch a graph and determine the characteristics

a. $f(x) = x^2 + 8x - 20$ zeros: -10, 2


2-1= 1 extrema

Max # of extrema: ___

$$x \to +\infty$$
 $f(x) \to \underline{\hspace{1cm}} 0$
 $x \to -\infty$ $f(x) \to \underline{\hspace{1cm}} 0$

b. $f(x) = x^3 + 2x^2 - x - 2$ zeros: -2, -1, 1

of Zeros:

Y-Int:
$$(0,-2)$$

Max # of extrema: 2

$$x \to +\infty$$
 $f(x) \to \underline{\infty}$
 $x \to -\infty$ $f(x) \to \underline{-\infty}$

$$x \to -\infty$$
 $f(x) \to -\infty$