Warm up: State the end behavior of the graphs.
a. as $x \rightarrow \infty, y \rightarrow \infty$
b.

C. as $x \rightarrow \infty, y \rightarrow-\infty$
d. as $x \rightarrow \infty, y \rightarrow \infty$
as $x \rightarrow-\infty, y \rightarrow-\infty$ as $x \rightarrow-\infty, y \rightarrow-\infty$

Graphs of polynomial functions of higher degrees

*Graphs are continuous and can be drawn without picking up your pencil. No jumps or holes.
*Graphs are smooth curves so there are no sharp turns (like absolute value)

*the y-intercept is the constant term

End Behavior of Polynomials

Sign of Degr Leading Coefficiemt	Degree is Even $\text { Ex. }\left\{\begin{array}{l} y=-3 x+2 x^{2}+5 \\ y=-3 x^{6}+3 x^{3}+5 \end{array}\right.$	Degree is Odd Ex. $\left\{\begin{array}{l}y=2 x^{5}-3 x+4 \\ y=-2 x^{7}-x+4\end{array}\right.$
Leading Coefficient is Positive (+) $\text { Ex. }\left\{\begin{array}{l} y=-3 x+2 x^{2}+5 \\ y=2 x^{5}-3 x+4 \end{array}\right.$		$\begin{array}{\|cc\|} \hline \end{array}$
Leading Coefficient is Negative (+) $\text { Ex. }\left\{\begin{array}{c} y=-3 x^{6}+3 x^{3}+5 \\ y=-2 x^{7}-x+4 \end{array}\right.$		

visual examples:	
even degree positive lead coeff $5 x^{4}$	even degree $-5 x^{4}$ negative lead coeff
$\prod_{\substack{\text { as right } \\ x \rightarrow-\infty, f(x) \rightarrow \infty \\ x \rightarrow-\infty, f(x) \rightarrow \infty}}$	$\begin{aligned} & x \rightarrow \text { right }^{2}, f(x) \rightarrow-\infty \\ & x \rightarrow-\infty, f(x) \rightarrow-\infty \end{aligned}$
odd degree	odd degree $-3 x$
$x \rightarrow \infty, f(x) \rightarrow \infty$ up	$x \rightarrow \infty$
$x \rightarrow-\infty, f(x) \rightarrow-\infty \text { down }$	$\rightarrow-\infty, f(x) \rightarrow \infty$

Give the end behavior for the polynomial

$$
\begin{aligned}
& y=4 x^{3}+5 x^{2}+7 x+1 \\
& \text { odd positive } \\
& \text { degree: } 3 \text { L.C.: } 4 \\
& x \rightarrow-\infty f y(x) \rightarrow-\infty \\
& x \rightarrow \infty, f(x) \rightarrow \infty \\
& \text { right }
\end{aligned}
$$

$$
y=-3 x^{2}+2 x-1
$$

degree: 2 L.C: -3 even negative

$$
\begin{aligned}
& x \rightarrow-\infty, f(x) \rightarrow \underline{-\infty} \\
& x \rightarrow \infty, f(x) \rightarrow \underline{-\infty}
\end{aligned}
$$

Give the end behavior for the polynomial

$$
\begin{aligned}
& y=x^{4}+5 x^{2}+3 \\
& \text { degree: } 4 \text { LC: } 1 \\
& \text { even positive } \\
& \{ \\
& x \rightarrow-\infty, f(x) \rightarrow \infty \\
& x \rightarrow \infty, f(x) \rightarrow \infty
\end{aligned}
$$

$$
y=-x^{5}+4
$$

deg: 5 LC: -1 odd negative

$$
\begin{aligned}
& x \rightarrow-\infty, f(x) \rightarrow \infty \\
& x \rightarrow \infty, \infty \\
& \text { light }(x) \rightarrow-\infty
\end{aligned}
$$

Multiplicity of Zeros (Roots)

Single zero
Cross through that zeroctroot)

Zero with multiplicity 2
Bounces off x-axis

Zero with multiplicity 3
Flattens (horizontal tangent)

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient. Define multiplicities.

Degree even Lead coif + roots and mult:
$x=-3$ multi. 1
$x=-1$ malt. 3
$x=2$ milt. 2

Degree odd
Lead coeff \qquad
roots and mut:

$$
\begin{array}{r}
x=-3, x=-1, x=1 \\
x=3, x=5 \text { all } \omega / \\
\text { mull. }
\end{array}
$$

The Fundamental
Theorem of Algebra

- If $\mathrm{P}(\mathrm{x})$ is a polynomial of degree n , there are exactly n complex roots. x^{7} means 7 roots
- This means that some of the roots might be imaginary and some might be real. imaginary solutions always come in pairs $\pm 3 i$

Zeros of a Polynomial Function:

An $\mathbf{n}^{\text {th }}$ degree polynomial function in one variable has at most \mathbf{n} real zeros. There will be exactly \mathbf{n} real or complex zeros.

An $\mathbf{n}^{\text {th }}$ degree polynomial will have at most $\mathbf{n - 1}$ "turns" or "relative max or min".

$$
\begin{aligned}
& x^{6} \rightarrow \text { 6th deg. } \rightarrow 6-1=5 \text { turns } \\
& x^{2} \uparrow 2 \text { (extrema or } \max _{\text {min }} \text {) } \\
& x^{3} \sim 1=1 \text { turn }
\end{aligned}
$$

* $x=a$ is a zero or root of the function $f(x)$.
$x=4$
* $x=a$ is a solution of the equation $f(x)=0$.
$x=4$
$f(4)=0$
* $(x-a)$ is a factor of the function $f(x)$.

$$
x-4
$$

* $(a, 0)$ is an x-intercept of the graph of $f(x)$.

$$
(4,0)
$$

$$
\begin{aligned}
& \text { 1. Consider the polynomial function } g(x) \text { that has zeros at } \\
& x=3, x=-\sqrt{2} \text { and } x=\sqrt{2 \text {. }} \\
& \text { change to factors for port } \\
& \text { a. what is the minimum degree of the } \\
& \text { polynomial function } g(x) \text { ? } 3 \text { bc there are } 3 \\
& \text { real zeros } \\
& \text { b. Assuming all of the coefficients of the polynomial are } \\
& \text { real and the leading coefficient is } 2 \text { create the } \\
& \text { polynomial function in factored form that should } \\
& \text { describe } g(x) . g(x)=2(x-3)(x+\sqrt{2})(x-\sqrt{2}) \\
& \text { c. Rewrite the polynomial, } g(x) \text {, in expanded these list } \\
& \qquad \begin{array}{r}
g(x)=2(x-3)(x+\sqrt{2})(x-\sqrt{2}) \\
=(2 x-6)\left(x^{2}-\sqrt{2} x-\sqrt{2 x}-2\right) \\
g(x)=(2 x-6)\left(x^{2}-2\right) \\
g(x)=2 x^{3}-6 x^{2}-4 x+12
\end{array}
\end{aligned}
$$

2. Consider the polynomial function $\mathbf{p (x)}$ that has zeros at $x=2, x=-2$, and $x=4$.
a. what is the minimum degree of the polynomial function $\mathbf{p}(\mathbf{x})$? 3
b. write the polynomial function, $\mathbf{p}(\mathbf{x})$, in expanded form.

$$
\begin{gathered}
p(x)=(x-2)(x+2)(x-4) \\
\left(x^{2}-4\right)(x-4) \\
p(x)=x^{3}-4 x^{2}-4 x+16
\end{gathered}
$$

3. Consider the polynomial function $\mathbf{q (x)}$ that has zeros at $\mathbf{x}=1$ and $\mathbf{x}=3 \mathbf{i},+-3 i$
timaginary sol. \&
Assuming the leading coefficient is 1 , create a radicals polynomial function in factored form that should come in

$$
\begin{aligned}
& \text { describe } q(x) . \\
& q(x)=(x-1)(x-3 i)(x+3 i) \\
&=(x-1)\left(x^{2}-3 i x+3 i x-9 i^{2}\right) \\
&(x-1)\left(x^{2}-9(-1)\right) \\
&(x-1)\left(x^{2}+9\right) \\
& q(x)=x^{3}-x^{2}+9 x-9
\end{aligned}
$$

c. Rewrite the polynomial function, $\mathbf{q (x)}$, in expanded form.

$$
q(x)=
$$

$$
\begin{array}{ll}
i+-i \rightarrow(x-i)(x+i)=x^{2}-i^{2}= & x^{2}+1 \\
2 i+-2 i \rightarrow(x-2 i)(x+2 i)=x^{2}-4 i^{2}= & x^{2}+4 \\
3 i+-3 i & x^{2}+9 \\
4 i+-4 i & x^{2}+16 \\
5 i+-5 i & x^{2}+25 \\
6 i+-6 i & x^{2}+36
\end{array}
$$

4. a. List all of the zeros and multiplicities.
$x=-1$ malt 1
$x=1$ malt 1
$x=3$ malt 2
b. Assuming all of the factors are real and the leading coefficient is 1 , create a polynomial function in factored form that should describe $\mathbf{m}(\mathbf{x})$.

$$
\begin{aligned}
& (x+1)(x-1)(x-3)(x-3) \\
& \left(x^{2}-1\right)\left(x^{2}-6 x+9\right) \quad m(x)=(x+1)(x-1)(x-3)^{2} \\
& x^{4}-6 x^{3}+9 x^{2} \\
& \quad-1 x^{2}+6 x-9
\end{aligned}
$$

c. rewrite the polynomial function, $m(x)$, in expanded form.

$$
m(x)=x^{4}-6 x^{3}+8 x^{2}+6 x-9
$$

5.

a. $f(x)=x^{3}-4 x^{2}+x+6$

number of real zeros:
(indicate any with higher multiplicity)

$$
3
$$

number of imaginary zeros:
b. $h(x)=-x^{4}+5 x^{2}+1$

- $100^{*} 3$ turns $+1=$ degree 4
number of real zeros:
2
number of imaginary zeros:
$h(x)$
2
c. $g(x)=x^{5}+2 x^{4}-4 x^{2}-5 x+6$

