r

Warm up

$$x^2 - 4 = (x+2)(x-2)$$

Factor, if possible. If prime, write PRIME.
1. $9x^2 - 4y^2$
 $(3x+2y)(3x-2y)$
3. $a^2b^8 - 9p^6q^2 = ab^4$
 $(ab^4+3p^2)(ab^4-3p^2)$
5. $(5m^3)^2 - (6n)^2 = 5m^3$
 $(5m^3+6n)(5m^2-6n)$
 $(x+3+y)(x+3-y)$
 $(x+3+y)(x+3-y)$

Common Polynomial Identities:	
Description	Identity
Difference of Two Squares	$a^2 - b^2 = (a + b)(a - b)$
Sum of Two Squares	$\frac{a^2 + b^2 - (a + bi)(a - bi)}{a - bi}$
Perfect Square Trinomial	$a^2 + 2ab + b^2 = (a+b)^2$
Perfect Square Trinomial	$a^2 - 2ab + b^2 = (a - b)^2$
Binomial Cubed	$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$
Binomial Cubed	$a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3$
Difference of Two Cubes	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
Sum of Two Cubes 🔶	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Factor the following polynomial expressions using the
grouping technique. Use when you have 4 terms
3.
$$(6m^3 + 8m)(+9m + 12) = 2m^2(3m+4) + 3(3m+4)$$

 $(3m+4)(2m^2+3)$
 $4(9a^3 - 6a)(-6a + 4) = 3a^2(3a-2) - 2(3a-2)$
 $(3a-2)(3a^2-2)$
 $(3a-2)(3a^2-2)$
 $5.(3p^3 - 2p)(-27p + 18) = p^2(3p-2) - 9(3p-2)$
 $(p^2 - 9)(3p-2)$
 $(p+3)(p-3)(3p-2)$

3.1 Polynomial Factoring.notebook

3. $27x^3 - y^3$ a= 3x b= y (3x - y)(9x²+ 3xy+y²) 4. $27x^{3} + 64y^{6}$ $\alpha = 3x$ $b = 4y^{2}$ $(3x + 4y^{2})(9x^{2} - 12xy^{2} + 16y^{4})$ = 2/644

What is the difference between these two problems? $2y^3 + 4y^2 - 30y$ $2y^3 + 4y^2 - 30y \bigcirc 0$ *we can NEVER divide an equation through by a Variable

Find the roots of these equations.
1.
$$4x^6 + 4x^5 - 24x^4 = 0$$

 $4x^4 (x^2 + x - 6) = 0$
 $4x^4 (x+3)(x-2) = 0$
 $4x^4 = 0$ $x+3=0$ $x-2=0$
 $4x^4 = 0$ $x+3=0$ $x-2=0$
 $4x^4 = 0$ $x=-3$ $x=2$
 $x=0$
multiplicity
 $0f = 4$
 $y = 0$

3.1 Polynomial Factoring.notebook

2. $x^{(2)}$ + 25 = 26 x^2 Set = 0 (56 ×4-26x2+25=0 4 roots $(x^2 - 35)(x^2 - 1) = 0$ (x+5)(x-5)(x+1)(x-1) = 0(X=-5) X=5 (X=-1) (X=1) Sometimes factors appear most than once. This creates a multiple root. (multiplicity is the number of times x - r is a factor) Oegre 5 = 5 roots 3. $3x^{3} + 18x^{4} + 27x^{3} = 0$ $3x^{3}(x^{2}+6x+9)=0$ $3x^{3}(x+3)(x+3)=0$ 3,00 x+3=0 x+3=0 X=-3

3.1 Polynomial Factoring.notebook

