

Solve the following by completing the square. Derive the quadratic formula.

Solve the following by the quadratic formula.

$$
\begin{aligned}
& \text { 1. } x^{2}+10 x-19=0 \\
& a x^{2}+b x+c=0 \\
& a=1 \quad b=10 \quad c=-19 \\
& x=\frac{-b \pm \sqrt{(b)^{2}-4 a c}}{2 a} \\
& x=\frac{-10 \pm \sqrt{(10)^{2}-4(1)(-19)}}{2(1)} \\
& x=-\frac{10 \pm \sqrt{176}}{2} \rightarrow \sqrt{16 \cdot 11} \\
& x=\frac{-10 \pm 4 \sqrt{11}}{2}=-5 \pm 2 \sqrt{11}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } 2 x^{2}-8 x+15=0 \\
& a=2 \quad b=-8 \quad c=15
\end{aligned}
$$

$$
x=\frac{8 \pm \sqrt{(-8)^{2}-4(2)(15)}}{2(2)} \leftarrow 64-120
$$

$$
x=\frac{8 \pm \sqrt{-56}}{4} \leftarrow \sqrt{-4 \cdot 14}
$$

$$
x=\frac{8 \pm 2 i \sqrt{14}}{4}=\frac{4 \pm i \sqrt{14}}{2}
$$

$$
\frac{8}{4} \pm \frac{2 i \sqrt{14}}{42}
$$

$$
2 \pm \frac{i \sqrt{14}}{2}
$$

$3.3 x^{2}-7 x-6=0$
$a=3 \quad b=-7 \quad c=-6$
$x=\frac{7 \pm \sqrt{(-7)^{2}-4(3)(-6)}}{3(2)}$
$x=\frac{7 \pm \sqrt{121}}{6}=\frac{7 \pm 11}{6}, x=\frac{7-11}{6}=\frac{-2}{3}$

The DISCRIMINANT
The discriminant determines the type of solu ion and the number of solutions:
rational or irrational real or imaginary (complex)
$b^{2}-4 a c=$ discriminant

5. Matching:

IIa. discriminant is positive 2 real x-im.
Io. discriminant is zero 1 real x-int

IIc. discriminant is negative 2 imag.

Describe the nature of the roots using the discriminant.

1. $2 x^{2}-8 x-14=0$
2. $3 x^{2}+2 x+8=0$
$b^{2}-4 a c$ $b^{2}-4 a c$
$(-8)^{2}-4(2)(-14)$
$(2)^{2}-4(3)(8)$
discr $=176$
discr $=-92$
2 real irrational solutions
2 imaginary sol.
3. $3 x^{2}-15 x+12=0$
4. $3 x^{2}-10 x-7=0$
$(-15)^{2}-4(3)(12)$ $(-10)^{2}-4(3)(-7)$
discr $=81$
discr $=184$
2 real rational sol.
2 real irrational sol.

Homework~ p. 19 \# 1-6 and p. 17 \& 18 ALL

I can solve quadratics using the quadratic
formula. I can apply properties of the discriminant.

